Organism	Ref.	Number of growth conditions, and temperature (°C)	SGR	m RNA (fg) ^c	m _{Pr} (fg)	R _{RNA:Pr}	P (fg)	N (fg)	R _{P:N}
Escherichia coli Streptomyces	[] []	5 (37) 7 (30)	0.42–1.73 0.024–0.3	20–212 30.9–85.7	100–450 144–170	0.2-0.47	1.6–16.9 2.5–6.9	20.2–109.1 29.4–42.1	0.08-0.15
coelicolor	0.0	7 (30)	0.021 0.5	50.7-05.7	111-170	0.21-0.5	2.5 0.7	27.1 12.1	0.00-0.10
Mycobacterium bovis	[11]	I (37)	0.029	13.2	153	0.09	1.1	28.3	0.04
Selenomonas ruminantium	[12]	3 (39)	0.05-0.35	53.9-87.2 ^b	300-423 ²	0.18-0.21	4.3–7.0 ^b	51.6–72.8 ^b	0.072-0.081
Saccharomyces cerevisiae (1) Strain FL521d	[13]	6 (30)	0.04–0.59	600-1400	1900–3040	0.2–0.47	48–112	417–730	0.12-0.15
Saccharomyces cerevisiae (2) Strain A364A	[14]	8 (30)	0.085–0. 4 3	490–510	2100–3500	0.15-0.23	39–41	435–680	0.06-0.09
Neurospora crassa	[15]	8 (30)	0.09-0.63	15-62.8ª	132–145ª	0.11-0.43	5-1.2ª	25-34.4ª	0.05-0.15
Prototheca zopfii All organisms	[16]	12 (25)	0.086-0.223 0.029-1.73	2200–15610 13.2–15610	10000–55000 100–55000	0.22–0.28 0.1–0.5	76– 249 . – 249	2050–11802 20.2–11802	0.09–0.13 0.04–0.16
Change by a factor of:			60	1183	550	5	1135	584	4

Table I: Variation of the macromolecular composition, P, and N contents of the unicellular organisms in the studies

^aExpressed as w/w.

^bExpressed as mg per ml.

cl fg = 10-15g.

^dFL521 strain of S.cerevisiae carries a mutation and cannot synthesis pyrimidine endogenously, therefore the nucleotides were provided in the growth media.

11. Cox RA: Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. *Microbiology* 2004, **150**:1413-1426.

12. Mink RW, Hespell RB: Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium. *J Bacteriol* 1981, **148**:541-550.

13. Waldron C, Lacroute F: Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. *J Bacteriol Kerkhof L, Kemp* 1975:P855-865.

14. Boehlke KW, Friesen JD: Cellular content of ribonucleic acid and protein in Saccharomyces cerevisiae as a function of exponential growth rate: calculation of the apparent peptide chain elongation rate. *J Bacteriol* 1975, **121**:429-433.

15. Alberghina FA, Sturani E, Gohlke JR: Levels and rates of synthesis of ribosomal ribonucleic acid, transfer ribonucleic acid, and protein in Neurospora crassa in different steady states of growth. *J Biol Chem* 1975, **250**:4381-4388.

16. Poyton RO: Effect of growth rate on the macromolecular composition of **Prototheca zopfii, a colorless alga which divides by multiple fission.** *J Bacteriol* 1973, **113:**203-211.