Comparison of properties of the high K_m soluble 5'-nucleotidases characterized by (Bontemps, Van den Berghe et al. 1988) and by (Spychala, Madrid-Marina et al. 1988):

Property	(Bontemps, Van den Berghe et al. 1988)	(Spychala, Madrid-Marina et al. 1988)
Assay cond.	37°C, 10mM MgCl ₂ , 50 mM Tris/HCl pH 7.2	60 mM imidazole/HCl, pH 7.4, 1 mM MgCl2,
	or 50 mM Mes pH 6.3	150 mM KCl, 0.5 mM dithiothreitol, 1 mg/ml
		bovine serum albumin
Spec.	0.446 μmol/min/mg	25.6 μmol/min/mg
activity		
\mathbf{M}_{r}	250 kDa	53 kDa (subunit), 210 kDa (native)
pH optimum	6.3	6.5
$K_a(Mg^{2+})$	1.7 mM (with 1 mM IMP)	~0.2 mM (with 0.1 mM IMP)
Substr. pref.	XMP>IMP>dIMP~GMP>dGMP>UMP>dUM	IMP>dIMP~GMP>dGMP>>XMP>UMP>AM
@ 2.5 mM	P>AMP (@ pH 6.3)	P
Km(IMP)	0.4 mM (in absence of effectors)	0.33 mM
Km(GMP)	0.8 mM (in absence of effectors)	
Activators	2,3-DPG~dATP>ATP>GTP>ADP (@ 0.2 mM	dATP>ATP>2,3-DPG>ADP (@ 0.1 mM IMP,
	IMP, 1 mM activator)	3 mM activator)
Inhibitors	P_{i}	P_{i}
Effect of		3 mM ATP increase V_{max} 12-fold, decrease $S_{0.5}$
ATP		to 0.09 mM and decrease nH from 1.3 to 0.9
		(with MgCl ₂ 1.0 mM in excess of ATP
		concentration)
Effect of		Hyperbolic activation w/ $A_{0.5}$ =0.31 mM and
2,3-DPG		$V_{max}(2,3-DPG) = 0.754 \times V_{max}(ATP) @ 0.1 mM$
		IMP
Effect of P _i		@ 4 mM has little effect on V_{max} and $S_{0.5}$ for
		IMP, but increases the Hill coefficient from 1.3
		to 1.9. With 0.1 mM IMP and 3 mM MgATP ²⁻ ,
		sharply decreases the enzyme activity and
		reaches a half-maximal effect at 2.3 mM