
COMS30048 lecture: week #24

▶ Agenda:
1. a 2-part unit summary:
▶ recap re. motivation, i.e., why the unit exists,
▶ what did and didn’t we do in the unit,

2. drop-in slot re. coursework assignment.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (1)

Quote

Pp

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

– Reimann [5]

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)
Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per Solinas [6, Example 3, Page 20])

Pp

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256
− 2224 + 2192 + 296

− 1
Output: The result r = z (mod p)

1. Form the nine, 8-word intermediate variables

S0 = ⟨ z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 ⟩

S1 = ⟨ 0, 0, 0, z11 , z12 , z13 , z14 , z15 ⟩

S2 = ⟨ 0, 0, 0, z12 , z13 , z14 , z15 , 0 ⟩

S3 = ⟨ z8 , z9 , z10 , 0, 0, 0, z14 , z15 ⟩

S4 = ⟨ z9 , z10 , z11 , z13 , z14 , z15 , z13 , z8 ⟩

S5 = ⟨ z11 , z12 , z13 , 0, 0, 0, z8 , z10 ⟩

S6 = ⟨ z12 , z13 , z14 , z15 , 0, 0, z9 , z11 ⟩

S7 = ⟨ z13 , z14 , z15 , z8 , z9 , z10 , 0, z12 ⟩

S8 = ⟨ z14 , z15 , 0, z9 , z10 , z11 , 0, z13 ⟩

2. Compute
r = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8 (mod p).

3. Return 0 ≤ r < p.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)
Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per OpenSSL 0.9.8g)

Pp

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256
− 2224 + 2192 + 296

− 1
Output: The (potentially incorrect) result r = z (mod p)

1. Form the nine, 8-word intermediate variables

S0 = ⟨ z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 ⟩

S1 = ⟨ 0, 0, 0, z11 , z12 , z13 , z14 , z15 ⟩

S2 = ⟨ 0, 0, 0, z12 , z13 , z14 , z15 , 0 ⟩

S3 = ⟨ z8 , z9 , z10 , 0, 0, 0, z14 , z15 ⟩

S4 = ⟨ z9 , z10 , z11 , z13 , z14 , z15 , z13 , z8 ⟩

S5 = ⟨ z11 , z12 , z13 , 0, 0, 0, z8 , z10 ⟩

S6 = ⟨ z12 , z13 , z14 , z15 , 0, 0, z9 , z11 ⟩

S7 = ⟨ z13 , z14 , z15 , z8 , z9 , z10 , 0, z12 ⟩

S8 = ⟨ z14 , z15 , 0, z9 , z10 , z11 , 0, z13 ⟩

2. Compute
S = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8

= t + c · 2256

3. Compute
r = t − c · p (mod 2256)
= t − sign(c) · T[|c|] (mod 2256)

for pre-computed T[i] = i · p.

4. If r ≥ p (resp. r < 0) then update r← r − p (resp. r← r + p), return r.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (3)
Issue 1: arithmetic on NIST-P-{256, 384}

▶ Observation(s):
▶ good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.

▶ bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,
1. triggered deliberately with special-form operands

x = (232
− 1) · 2224 + 3 · 2128 + x0

y = (232
− 1) · 2224 + 1 · 296 + y0

for random 0 ≤ x0, y0 < 232, or
2. triggered randomly with probability ∼ 10 · 2−29.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.1])

Pp

A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

k(i)
A

$
←− {1, 2, . . . ,n − 1}

Q(i)
A
←

[
k(i)
A

]
G

k(i)
B

$
←− {1, 2, . . . ,n − 1}

Q(i)
B
←

[
k(i)
B

]
G

R(i)
A
←

[
k(i)
A

]
Q(i)
B
=
[
k(i)
A
· k(i)
B

]
G R(i)

B
←

[
k(i)
B

]
Q(i)
A
=
[
k(i)
B
· k(i)
A

]
G

Use R(i)
A

Use R(i)
B

Q(i)
A

Q(i)
B

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.4])

Pp

A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

kA
$
←− {1, 2, . . . ,n − 1}
QA ← [kA] G

kB
$
←− {1, 2, . . . ,n − 1}
QB ← [kB] G

R(i)
A
← [kA] QB = [kA · kB] G R(i)

B
← [kB] QA = [kB · kA] G

Use R(i)
A

Use R(i)
B

QA

QB

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.3])

Pp

A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

kB
$
←− {1, 2, . . . ,n − 1}
QB ← [kB] G

k(i)
A

$
←− {1, 2, . . . ,n − 1}

Q(i)
A
←

[
k(i)
A

]
G

R(i)
A
←

[
k(i)
A

]
QB =

[
k(i)
A
· kB
]

G R(i)
B
← [kB] Q(i)

A
=
[
kB · k

(i)
A

]
G

Use R(i)
A

Use R(i)
B

Q(i)
A

QB

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (5)
Issue 2: (opt-out) ephemeral-static EC-DHE

▶ Observation(s):
▶ good: the key agreement is more efficient (for the server).

▶ good: input points are validated by testing whether

P2
y

?
= P3

x + a4Px + a6

given P = (Px,Py).

▶ bad: ephemeral-static EC-DHE is the default i.e.,
▶ uses a per-invocation (of the library) rather than a per-session key, unless
▶ one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE

which means kB is a static, fixed target for any attack.

▶ bad: if we select P = (Px,Py) as follows
1. Select Px such that during the computation of the RHS t′ = (P2

x + a4) · Px + a6 (mod p)
• the step t′0 = P2

x (mod p) does not trigger the bug, and
• the step t′1 = (t′0 + a4) · Px (mod p) does trigger the bug, and
• t′ is a quadratic residue modulo p.

2. Compute Py =
√

t′ (mod p).

then P passes validation, but is on some curve E′ rather than E.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (6)
An attack!

Quote

Pp

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the
secret key, sometimes with a single well-chosen ciphertext.

– Biham et. al. [1, Page 1]

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7)
An attack!

▶ Scenario:
▶ given the following interaction between an attacker E and a target T

E T

c

m (N, d)

m = RSA.Dec((N, d), c)
= cd (mod N)

1 algorithm RSA.Dec((N, d), c) begin
2 Pre-compute Π = (N, ρ, ω) from N
3 ĉ←MontMul(Π, c, ρ2 mod N)
4 r̂←MontMul(Π, c, ρ2 mod N)
5 for i = |d| − 2 downto 0 do
6 r̂←MontMul(Π, r̂, r̂)
7 if di = 1 then
8 r̂←MontMul(Π, r̂, ĉ)
9 end

10 end
11 return MontMul(Π, r̂, 1)
12 end

▶ and noting that
▶ there are no countermeasures implemented,
▶ the Montgomery multiplication implementation is FIOS-based [3],
▶ the (w × w)-bit integer multiplier hardware has a bug: when computing r = x × y if

x , α ∨ y , β ⇒ r is correct
x = α ∧ y = β ⇒ r is incorrect

for some known (but arbitrary) α and β.
▶ how can Emount a successful attack, i.e., recover d ?

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (8)
An attack!

▶ Attack [1, Section 4.2]:
▶ in some t-th step, E
▶ knows some more-significant portion of the binary expansion of d, and
▶ aims to recover dt, the next less-significant unknown bit,

▶ select a c so during decryption when i = t and just after line #6

∃ j such that r̂j = α
∃ j such that ĉj = β

i.e., α and β occur in the representations of r̂ and ĉ,
▶ this selection means

dt = 0 ⇒ r̂ is not multiplied by ĉ ⇒ the bug is not triggered
dt = 1 ⇒ r̂ is multiplied by ĉ ⇒ the bug is triggered

▶ test whether
me (mod N) ?

= c
and infer

m is correct ⇒ the bug was not triggered ⇒ dt = 0
m is incorrect ⇒ the bug was triggered ⇒ dt = 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (9)
An attack!

Feature Biham et. al. [1, Section 4.2] Brumley et. al. [2, Section 3]

Target Fixed d Fixed kT

Input
Arbitrary poisoned

integer c ∈ Z∗N

Controlled distinguisher
point QE = [kE] G ∈ E(Fp)

Computation
Left-to-right

binary exponentiation
Left-to-right (modified)

wNAF scalar multiplication

Leakage
Re-encrypt m using e,

check against c Handshake success/failure

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10)
A patch?

▶ Epilogue:
▶ good(ish):

Quote

Pp

We appreciate you reporting this issue to us but, unfortunately, we aren’t inclined to handle this vulnerability because it is
already patched and only affects obsolete Linux distributions.

– CERT

▶ bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version Percentage

0.9.8e-fips-rhel5 37.25
0.9.8g 14.50
0.9.7a 7.02
0.9.8o 4.76
1.0.0-fips 4.36
0.9.7d 2.91
0.9.8n 2.75
0.9.7e 1.94
0.9.8c 1.80
0.9.8m 1.74
0.9.8e 1.72
0.9.8r 1.71

Table 2: Most popular OpenSSL versions on the Internet.

0	

0.2	

0.4	

0.6	

0.8	

1	

1	 5	 10	 15	 20	 25	

Pr
op

or
%o

n	
of
	 O
pe

nS
SL
	 D
ep

lo
ym

en
ts
	

Number	 of	 Vulnerabili%es	

Figure 3: Percentage of OpenSSL deployments with at
least n unpatched vulnerabilities

4.3 Vulnerabilities
From the OpenSSL website’s known vulnerability report
section [21] we see that 75.9% of known vulnerabilities
apply to five or more OpenSSL versions within the same
patch family. Thus if the OpenSSL implementation can
be accurately fingerprinted to within a patch family then
there is a high probability that at least some of the vulner-
abilities reported for the guessed OpenSSL version will
apply even if the guess is incorrect.

Based on the results in Table 2 and data from the
OpenSSL vulnerability report [21], we have computed the
number of reported vulnerabilities for each OpenSSL ver-
sion that we have predicted using our analysis engine. Our
results show that 95% of all deployed OpenSSL versions
have at least one known CVE that hasn’t been patched by
OpenSSL (but that may have been patched by an individ-
ual distribution vendor). 64.12% of all deployed OpenSSL
versions have more than 10 CVEs. The complementary
CDF of vulnerabilities is presented in Figure 3.

One of the least surprising findings of our survey is that
most users are running the OpenSSL version included

Distribution OSSL Version CVEs

Debian Squeeze (6.0) 0.9.8o 11
Debian Lenny (5.0) 0.9.8g 24
Debian Etch (4.0) 0.9.8c 26
RHEL 6 0.9.8e/1.0.0-fips 0/14
RHEL 5 0.9.7a/0.9.8e-fips 14/0
RHEL 4 0.9.6b/0.9.7a 9/14
Fedora 18 1.0.1c 3
Fedora 17 1.0.0i 3
Fedora 16 1.0.0e 9

Table 3: Default OpenSSL versions shipping with popular
Linux distributions.

in their Linux distribution and, in many cases, users do
not keep their Linux installations up to date. We will
discuss potential reasons for this in the next section. Ta-
ble 3 includes a list of three of the most popular Linux
distributions that we found in our crawl as well as the
default OpenSSL version that each shipped with.

We note that many of the most popular OpenSSL ver-
sions in Table 2 are versions that shipped in the popular
Linux distributions in Table 3. This table indicates that
most of the default OpenSSL versions included in ship-
ping Linux distributions have several known vulnerabili-
ties. It is important to note that Linux distributions may
patch some of these vulnerabilities on their own, though
manufacturers usually do not patch all vulnerabilities.
This is because many vulnerabilities are discovered after
support for a given version is no longer being supported.
Our training data is unable to take these patch levels into
account for many distributions (such as Debian). This is a
fundamental limitation of our data set and of the training
data available. As a result, the number of CVEs filed
against an OpenSSL version form an upper bound of how
many known vulnerabilities might exist, but in practice
the number of outstanding vulnerabilities could be lower.
However, simply discovering the base version of a par-
ticular OpenSSL server raises the possibility of it being
vulnerable to a known attack.

5 Discussion

The results of our SSL/TLS case study validate our mod-
ular framework and general approach for identifying and
classifying versions of network protocol implementations.
Because our framework treats the modular components
(the URI generator, feature extractor, and classification
algorithms) as black boxes, we can plug in different mod-
ules to study other protocol implementations or a different
swath of the Internet with a minimum of effort. In the
future, we plan to do exactly this (see Section 8).

5

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383
mailto:csdsp@bristol.ac.uk

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10)
A patch?

▶ Epilogue:

▶ good(ish):

Quote

Pp

We appreciate you reporting this issue to us but, unfortunately, we aren’t inclined to handle this vulnerability because it is
already patched and only affects obsolete Linux distributions.

– CERT

▶ bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version Percentage

0.9.8e-fips-rhel5 37.25
0.9.8g 14.50
0.9.7a 7.02
0.9.8o 4.76
1.0.0-fips 4.36
0.9.7d 2.91
0.9.8n 2.75
0.9.7e 1.94
0.9.8c 1.80
0.9.8m 1.74
0.9.8e 1.72
0.9.8r 1.71

Table 2: Most popular OpenSSL versions on the Internet.

0	

0.2	

0.4	

0.6	

0.8	

1	

1	 5	 10	 15	 20	 25	

Pr
op

or
%o

n	
of
	 O
pe

nS
SL
	 D
ep

lo
ym

en
ts
	

Number	 of	 Vulnerabili%es	

Figure 3: Percentage of OpenSSL deployments with at
least n unpatched vulnerabilities

4.3 Vulnerabilities
From the OpenSSL website’s known vulnerability report
section [21] we see that 75.9% of known vulnerabilities
apply to five or more OpenSSL versions within the same
patch family. Thus if the OpenSSL implementation can
be accurately fingerprinted to within a patch family then
there is a high probability that at least some of the vulner-
abilities reported for the guessed OpenSSL version will
apply even if the guess is incorrect.

Based on the results in Table 2 and data from the
OpenSSL vulnerability report [21], we have computed the
number of reported vulnerabilities for each OpenSSL ver-
sion that we have predicted using our analysis engine. Our
results show that 95% of all deployed OpenSSL versions
have at least one known CVE that hasn’t been patched by
OpenSSL (but that may have been patched by an individ-
ual distribution vendor). 64.12% of all deployed OpenSSL
versions have more than 10 CVEs. The complementary
CDF of vulnerabilities is presented in Figure 3.

One of the least surprising findings of our survey is that
most users are running the OpenSSL version included

Distribution OSSL Version CVEs

Debian Squeeze (6.0) 0.9.8o 11
Debian Lenny (5.0) 0.9.8g 24
Debian Etch (4.0) 0.9.8c 26
RHEL 6 0.9.8e/1.0.0-fips 0/14
RHEL 5 0.9.7a/0.9.8e-fips 14/0
RHEL 4 0.9.6b/0.9.7a 9/14
Fedora 18 1.0.1c 3
Fedora 17 1.0.0i 3
Fedora 16 1.0.0e 9

Table 3: Default OpenSSL versions shipping with popular
Linux distributions.

in their Linux distribution and, in many cases, users do
not keep their Linux installations up to date. We will
discuss potential reasons for this in the next section. Ta-
ble 3 includes a list of three of the most popular Linux
distributions that we found in our crawl as well as the
default OpenSSL version that each shipped with.

We note that many of the most popular OpenSSL ver-
sions in Table 2 are versions that shipped in the popular
Linux distributions in Table 3. This table indicates that
most of the default OpenSSL versions included in ship-
ping Linux distributions have several known vulnerabili-
ties. It is important to note that Linux distributions may
patch some of these vulnerabilities on their own, though
manufacturers usually do not patch all vulnerabilities.
This is because many vulnerabilities are discovered after
support for a given version is no longer being supported.
Our training data is unable to take these patch levels into
account for many distributions (such as Debian). This is a
fundamental limitation of our data set and of the training
data available. As a result, the number of CVEs filed
against an OpenSSL version form an upper bound of how
many known vulnerabilities might exist, but in practice
the number of outstanding vulnerabilities could be lower.
However, simply discovering the base version of a par-
ticular OpenSSL server raises the possibility of it being
vulnerable to a known attack.

5 Discussion

The results of our SSL/TLS case study validate our mod-
ular framework and general approach for identifying and
classifying versions of network protocol implementations.
Because our framework treats the modular components
(the URI generator, feature extractor, and classification
algorithms) as black boxes, we can plug in different mod-
ules to study other protocol implementations or a different
swath of the Internet with a minimum of effort. In the
future, we plan to do exactly this (see Section 8).

5

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383
mailto:csdsp@bristol.ac.uk

Unit summary (1)

▶ Summary:

http://memegenerator.net

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://memegenerator.net
mailto:csdsp@bristol.ac.uk

Unit summary (2)

▶ Summary: what have we done includes

1. exposed some low-level detail:
▶ concrete versus abstract (e.g., AES versus generic block cipher),
▶ written standards (e.g., FIPS-197 versus lecture slides),
▶ ...

2. highlighted some high-level principles:
▶ most effective implementation will be domain-specific,
▶ apply adversarial thinking to everything,
▶ need for and value in well-considered trade-offs,
▶ don’t over-optimise to the point efficiency > security,
▶ apply “inverse Postel’s Law”, i.e., be very strict re. what you accept as input,
▶ ...

3. focused on some high-level outcomes:
▶ improved

awareness
understanding

skills
.
.
.

 ⇒ ability to engage with problems, produce solutions, ...

▶ general concepts (versus specific examples)⇒ long-term (versus short-term) value.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Unit summary (3)

▶ Summary: what haven’t we done includes

1. greater depth, i.e., more X for X ∈ COMS30048:
▶ more implementation

• platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
• constraints (e.g., from use-case, platform, tooling, ...)
• co-design (e.g., hardware/software, specification/implementation, ...)
• ...

▶ more attacks
▶ more countermeasures
▶ more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
▶ more protocols (e.g., DNSSEC, IPSec, ...)

2. greater breadth, i.e., more X for X < COMS30048:
▶ hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
▶ formal verification
▶ key management (e.g., secure generation, storage, and erasure, ...)
▶ social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
▶ certification and standardisation processes
▶ ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

References

[1] E. Biham, Y. Carmeli, and A. Shamir. “Bug Attacks”. In: Advances in Cryptology (CRYPTO). Vol. 5157. LNCS. Springer-Verlag,
2008, pp. 221–240 (see pp. 10, 12, 13).

[2] B. Brumley et al. “Practical realisation and elimination of an ECC-related software bug attack”. In: Topics in Cryptology
(CT-RSA). LNCS 7178. Springer-Verlag, 2012, pp. 171–186 (see pp. 2–15).

[3] Ç.K. Koç, T. Acar, and B.S. Kaliski. “Analyzing and comparing Montgomery multiplication algorithms”. In: IEEE Micro 16.3
(1996), pp. 26–33 (see p. 11).

[4] P.D. Martin et al. Classifying Network Protocol Implementation Versions: An OpenSSL Case Study. Tech. rep. 13-01. Johns Hopkins
University, 2013. url: http://www.michaelrushanan.org/pdf/martin.pdf (see pp. 14, 15).

[5] H. Reimann. BN_nist_mod_384 gives wrong answers. openssl-devmailing list #1593. 2007. url:
http://marc.info/?t=119271238800004 (see p. 2).

[6] J.A. Solinas. Generalized Mersenne Numbers. Tech. rep. CORR 99-39. Centre for Applied Cryptographic Research (CACR),
University of Waterloo, 1999 (see p. 3).

[7] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. Internet Engineering Task Force (IETF)
Request for Comments (RFC) 5246. 2008. url: http://tools.ietf.org/html/rfc5246 (see pp. 6–8).

[8] E. Rescorla. Diffie-Hellman Key Agreement Method. Internet Engineering Task Force (IETF) Request for Comments (RFC) 2631.
1999. url: http://tools.ietf.org/html/rfc2631 (see pp. 6–8).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://www.michaelrushanan.org/pdf/martin.pdf
http://marc.info/?t=119271238800004
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2631
mailto:csdsp@bristol.ac.uk

