Applied Cryptology

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. (csdsp@bristol.ac.uk)

April 24, 2024

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

► Agenda:

1. a 2-part unit summary:

- recap re. motivation, i.e., why the unit exists,what did and didn't we do in the unit,
- 2. drop-in slot re. coursework assignment.

© Daniel Page (dsdsp@bristol.ac.uk) Applied Cryptology	git # c8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (1)

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

– Reimann [5]

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2) Issue 1: arithmetic on NIST-P-{256, 384}

1. Form the nine, 8-	word inte	rmed	iate	variabl	es							
in round are finite, o			,	· ar lab								
	S_0	=	<	z ₀ ,	z_1 ,	z2,	z3,	Z4,	Z5,	Z6,	Z_7	>
	S_1	=	<	0,	0,	0,	z_{11} ,	z_{12} ,	z ₁₃ ,	z_{14} ,	z_{15}	\rangle
	S_2	=	<	0,	0,	0,	z_{12} ,	z_{13} ,	z_{14} ,	z_{15} ,	0	>
	S_3	=	<	Z8,	Z9,	z_{10} ,	0,	0,	0,	z_{14} ,	Z_{15}	\rangle
	S_4	=	<	Z9,	z_{10} ,	z_{11} ,	z ₁₃ ,	z_{14} ,	z ₁₅ ,	z_{13} ,	z_8	\rangle
	S_5	=	<	z_{11} ,	z_{12} ,	z_{13} ,	0,	0,	0,	z_8 ,	z_{10}	\rangle
	S_6	=	(Z12,	Z13,	Z14,	Z15,	0,	0,	Z9,	Z_{11}	\rangle
	S ₇	=	ì	Z13.	Z14.	Z15.	Z8.	Zo.	Z10.	0.	Z12	>
	S.	=	ì	Z14.	Z15.	0.	Zo.	Z10.	Z11.	Ő.	Z12	>
	- 0			-147	-157	-,	- , ,	107	-117	-,	-15	,
 Compute 												
		<i>r</i> =	$= S_0$	$+ 2S_1 +$	$-2S_2 +$	$S_3 + S_4$	$-S_{5}-$	$S_{6} - S_{7}$	$7 - S_8$	(mod	p).	

© Daniel Page (csdsp@bristol. Applied Cryptology

© Daniel Page (o

Output: The (potent	tially inco	rect)	resu	$\operatorname{ilt} r = z$	(mod	p)	x•y and	u the fi	loculus	s p = 2-		-2 + 2 - 2 + 2 - 1
1. Form the nine, 8-	word inte	rmec	liate	variabl	les							
	S_0	=	<	<i>z</i> ₀ ,	<i>z</i> ₁ ,	z ₂ ,	z ₃ ,	z_4 ,	z5,	z ₆ ,	Z_7	>
	S_1	=	<	0,	0,	0,	z_{11} ,	z_{12} ,	z ₁₃ ,	z_{14} ,	z_{15}	>
	S_2	=	<	0,	0,	0,	z ₁₂ ,	z ₁₃ ,	$z_{14},$	z ₁₅ ,	0	>
	S_3	=	<	z_8 ,	Z9,	$z_{10},$	0,	0,	0,	$z_{14},$	z_{15}	\rangle
	S_4	=	<	Z9,	$z_{10},$	$z_{11},$	z_{13} ,	$z_{14},$	z_{15} ,	z_{13} ,	Z_8	>
	S_5	=	<	$z_{11},$	z_{12} ,	z_{13} ,	0,	0,	0,	z ₈ ,	z_{10}	\rangle
	S_6	=	<	z_{12} ,	z_{13} ,	z_{14} ,	z_{15} ,	0,	0,	Z9,	z_{11}	\rangle
	S ₇	=	<	z ₁₃ ,	z ₁₄ ,	z ₁₅ ,	z ₈ ,	Z9,	z_{10} ,	0,	z_{12}	\rangle
	S_8	=	<	z_{14} ,	z ₁₅ ,	0,	Z9,	z_{10} ,	z_{11} ,	0,	z_{13}	>
2. Compute												
1			S	= S	$_{0} + 2S_{1}$	$+2S_{2}$	$+ S_3 + S_3$	$S_4 - S_5$	$-S_{6} -$	$S_7 - S_8$		
				= t	$+ c \cdot 2^{25}$	56						
Commuto												
5. Compute					4			(and 225	6)		
				/ =	1 -	$c \cdot p$	T[[a]]	(1)	and 2^{25}	6		
				-	1 -	sign(c)	· 1 [[c]]	(1)	100 2)		
for pre-computed	$d T[i] = i \cdot$	р.										
4 If $r > n$ (resp. $r <$	()) then 111	odate	$r \leftarrow$	r - p	resp. r	$\leftarrow r + i$), retu	rn <i>r</i> .				

University of BRISTOL

University of BRISTOL

Notes:		

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (3) Issue 1: arithmetic on NIST-P-[256,384]

Observation(s):

- good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.
- bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,
 - 1. triggered deliberately with special-form operands

$$\begin{array}{rcl} x & = & (2^{32}-1) \cdot 2^{224} + 3 \cdot 2^{128} + x_0 \\ y & = & (2^{32}-1) \cdot 2^{224} + 1 \cdot 2^{96} + y_0 \end{array}$$

for random $0 \le x_0, y_0 < 2^{32}, or$

2. triggered randomly with probability ~ $10 \cdot 2^{-29}$.

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology	git # c8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4) Issue 2: (opt-out) ephemeral-static EC-DHE

Notes:			

http://wiki.openssl.org/index.php/Diffie_Hellman

and

http://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4) Issue 2: (opt-out) ephemeral-static EC-DHE

 A high-level overv 	view of how the above relates to OpenSSL can be found at
0	
	http://wiki.openssl.org/index.php/Diffie_Hellman
and	http://wiki openes] org/index_php/Elliptic_Curve_Diffic_Wellmon
	http://wiki.openssi.org/index.php/Erriptic_Curve_Diffic_neriman
Note that the form	her explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suit
 It seems reasonable identifier (which it 	e to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE ciph mplies ephemeral, but not which, if any party respects this).

•	A high-level overview of how the above relates to OpenSSL can be found at
	http://wiki.openssl.org/index.php/Diffie_Hellman
	and
	http://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman
	Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list
•	It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher su identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (5) Issue 2: (opt-out) ephemeral-static EC-DHE

Observation(s):

- good: the key agreement is more efficient (for the server).
- good: input points are validated by testing whether

$$P_y^2 \stackrel{?}{=} P_x^3 + a_4 P_x + a_6$$

given $P = (P_x, P_y)$.

- **b**ad: ephemeral-*static* EC-DHE is the default i.e.,
 - uses a per-invocation (of the library) rather than a per-session key, *unless* one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE
 - which means $k_{\mathcal{B}}$ is a static, fixed target for any attack.
- **b**ad: if we select $P = (P_x, P_y)$ as follows
 - 1. Select P_x such that during the computation of the RHS $t' = (P_x^2 + a_4) \cdot P_x + a_6 \pmod{p}$
 - the step $t'_0 = P_x^2 \pmod{p}$ does not trigger the bug, and
 - the step $t'_1 = (t'_0 + a_4) \cdot P_x \pmod{p}$ does trigger the bug, and
 - *t*′ is a quadratic residue modulo *p*.
 - 2. Compute $P_y = \sqrt{t'} \pmod{p}$.

then *P* passes validation, but is on some curve E' rather than *E*.

© Daniel Page (csdsp#bristol.ac.uk) Applied Cryptology	Chiversity of	git # c8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (6) An attack!

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the secret key, sometimes with a single well-chosen ciphertext.

– Biham et. al. [1, Page 1]

BRISTOL

git # c8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7) An attack!

Scenario:

• given the following interaction between an **attacker** \mathcal{E} and a **target** \mathcal{T}

- and noting that
 - there are no countermeasures implemented,
 - the Montgomery multiplication implementation is FIOS-based [3],
 - the $(w \times w)$ -bit integer multiplier hardware has a bug: when computing $r = x \times y$ if

 $\begin{array}{rcl} x\neq\alpha & \lor & y\neq\beta & \Rightarrow & r \text{ is correct} \\ x=\alpha & \land & y=\beta & \Rightarrow & r \text{ is incorrect} \end{array}$

for some known (but arbitrary) α and β .

▶ how can *E* mount a successful attack, i.e., recover *d* ?

|--|

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (8) An attack!

- Attack [1, Section 4.2]:
 - in some *t*-th step, \mathcal{E}
 - knows some more-significant portion of the binary expansion of *d*, and
 - aims to recover d_t , the next less-significant unknown bit,
 - select a *c* so during decryption when i = t and just after line #6

$$\begin{array}{ll} \exists j & \text{such that} & \hat{r}_j = \alpha \\ \exists j & \text{such that} & \hat{c}_j = \beta \end{array}$$

i.e., α and β occur in the representations of \hat{r} and \hat{c} ,

this selection means

 $d_t = 0 \implies \hat{r}$ is not multiplied by $\hat{c} \implies$ the bug is not triggered $d_t = 1 \implies \hat{r}$ is multiplied by $\hat{c} \implies$ the bug is triggered

test whether

 $m^e \pmod{N} \stackrel{?}{=} c$

and infer

m is correct \Rightarrow the bug was not triggered \Rightarrow $d_t = 0$ m is incorrect \Rightarrow the bug was triggered \Rightarrow $d_t = 1$ Notes:

Notes:

Feature	Biham et. al. [1, Section 4.2]	Brumley et. al. [2, Section 3]
Target	Fixed <i>d</i>	Fixed $k_{\mathcal{T}}$
Input	Arbitrary poisoned integer $c \in \mathbb{Z}_N^*$	Controlled distinguisher point $Q_{\mathcal{E}} = [k_{\mathcal{E}}] G \in E(\mathbb{F}_p)$
Computation	Left-to-right binary exponentiation	Left-to-right (modified) wNAF scalar multiplication
Leakage	Re-encrypt <i>m</i> using <i>e</i> , check against <i>c</i>	Handshake success/failure

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10) A patch?

► Epilogue:

▶ good(ish):

Quote

We appreciate you reporting this issue to us but, unfortunately, we aren't inclined to handle this vulnerability because it is already patched and only affects obsolete Linux distributions.

-CERT

Notes:

• The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but OpenSSL 0.9.8g was released in 2007 (i.e., much earlier).

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

© Damiel Page (csdsp@bristol.ac.uk) Applied Cryptology Market University of

git # c8178615 @ 2024-04-24

04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10) A patch?

► Epilogue:

Notes:

• The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but OpenSSL 0.9.8g was released in 2007 (i.e., much earlier).

bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version	Percentage	Distribution	OSSL Version	CVEs
0.9.8e-fips-rhel5	37.25	Debian Squeeze (6.0)	0.9.80	11
0.9.8g	14.50	Debian Lenny (5.0)	0.9.8g	24
0.9.7a	7.02	Debian Etch (4.0)	0.9.8c	26
0.9.80	4.76	RHEL 6	0.9.8e/1.0.0-fips	0/14
1.0.0-fips	4.36	RHEL 5	0.9.7a/0.9.8e-fips	14/0
0.9.7d	2.91	RHEL 4	0.9.6b/0.9.7a	9/14
0.9.8n	2.75	Fedora 18	1.0.1c	3
0.9.7e	1.94	Fedora 17	1.0.0i	3
0.9.8c	1.80	Fedora 16	1.0.0e	9
0.9.8m	1.74			
0.9.8e	1.72	Table 3: Default OpenSS	L versions shipping wit	h popula
0.9.8r	1.71	Linux distributions.		

Table 2: Most popular OpenSSL versions on the Internet.

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

Diversity of BRISTOL

Unit summary (1)

Summary:

Unit summary (2)

Notes: Summary: what have we done includes 1. exposed some low-level detail: concrete versus abstract (e.g., AES versus generic block cipher), written standards (e.g., FIPS-197 versus lecture slides), ▶ ... 2. highlighted some high-level principles: most effective implementation will be domain-specific, apply adversarial thinking to everything, need for and value in well-considered trade-offs, don't over-optimise to the point efficiency > security, apply "inverse Postel's Law", i.e., be very strict re. what you accept as input, ... 3. focused on some high-level outcomes: improved awareness understanding skills \Rightarrow ability to engage with problems, produce solutions, ...

Notes:

▶ general concepts (versus specific examples) \Rightarrow long-term (versus short-term) value.

Unit summary (3)

Summary: what haven't we done includes

- 1. greater *depth*, i.e., more X for $X \in \text{COMS30048}$:
 - more implementation
 - platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
 - constraints (e.g., from use-case, platform, tooling, ...)
 - co-design (e.g., hardware/software, specification/implementation, ...)
 - ...
 - more attacks
 - more countermeasures
 - more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
 - more protocols (e.g., DNSSEC, IPSec, ...)
- 2. greater *breadth*, i.e., more *X* for $X \notin COMS30048$:
 - ▶ hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
 - formal verification
 - key management (e.g., secure generation, storage, and erasure, ...)
 - social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
 - certification and standardisation processes
 - ▶ ...

References

Notes:

- E. Biham, Y. Carmeli, and A. Shamir. "Bug Attacks". In: Advances in Cryptology (CRYPTO). Vol. 5157. LNCS. Springer-Verlag, 2008, pp. 221–240 (see pp. 23, 27, 29).
- [2] B. Brumley et al. "Practical realisation and elimination of an ECC-related software bug attack". In: Topics in Cryptology (CT-RSA). LNCS 7178. Springer-Verlag, 2012, pp. 171–186 (see pp. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31–34).
- [3] Ç.K. Koç, T. Acar, and B.S. Kaliski. "Analyzing and comparing Montgomery multiplication algorithms". In: *IEEE Micro* 16.3 (1996), pp. 26–33 (see p. 25).
- [4] P.D. Martin et al. Classifying Network Protocol Implementation Versions: An OpenSSL Case Study. Tech. rep. 13-01. Johns Hopkins University, 2013. URL: http://www.michaelrushanan.org/pdf/martin.pdf (see pp. 31–34).
- [5] H. Reimann. BN_nist_mod_384 gives wrong answers. openssl-dev mailing list #1593. 2007. URL: http://marc.info/?t=119271238800004 (see p. 7).
- [6] J.A. Solinas. Generalized Mersenne Numbers. Tech. rep. CORR 99-39. Centre for Applied Cryptographic Research (CACR), University of Waterloo, 1999 (see p. 9).
- [7] T. Dierks and E. Rescorla. *The Transport Layer Security (TLS) Protocol version* 1.2. Internet Engineering Task Force (IETF) Request for Comments (RFC) 5246. 2008. URL: http://tools.ietf.org/html/rfc5246 (see pp. 15, 17, 19).
- [8] E. Rescorla. Diffie-Hellman Key Agreement Method. Internet Engineering Task Force (IETF) Request for Comments (RFC) 2631. 1999. URL: http://tools.ietf.org/html/rfc2631 (see pp. 15, 17, 19).

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology	University of BRISTOL	git # c8178615 @ 2024-04-24