Notes:

Applied Cryptology

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
(csdsp@ristol.ac.uk)

April 24, 2024

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

>

Notes:

COMS30048 lecture: week #24

Notes:

> Agenda:
1. a2-part unit summary:

> recap re. motivation, i.e., why the unit exists,
> what did and didn’t we do in the unit,

2. drop-in slot re. coursework assignment.

Bk uni

BE

5@2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (1)

Notes:

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

— Reimann [5]

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)

Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Repuct, per Solinas [6, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product z = x - y and the modulus p = 225 — 2224 4 2192 4. 2% _ 1
Output: The result 7 = z (mod p)

1. Form the nine, 8-word intermediate variables

S = (=z, =z, 2z, 2z, z, 5, Z, Z7)
S5 = (0 0, 0, zu, 2z, Z13, Zu, Z15)
S = (0 0, 0, zin, z13, z1s, z5, 0)
S = ('z 2z, z0, O 0, 0, 'z, z15)
Se = ('z, z0, ZzZu, Z13, Zu, Z15, Z13, Z§)
Ss = (zun, z1n, z3 0 0, 0, 28, z10)
Se = (2z, z13, zu, z15 O, 0, 'z, zu)
S7 = (z13, zu, =15, 28 2z, Zio, 0, zi2)
Ss = (zu, z5, 0, 29, z10, zn, 0, ziz)

2. Compute
=850 +25 +25, +S3+ 54— S5 —S¢ — S7 — Sg (mod [,’7)

3. Return0<r<p.

Blke U 3
lied Cryptology BRI git # 8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (2)

Issue 1: arithmetic on NIST-P-{256, 384}

Notes:

Algorithm (NIST-P-256-Repuce, per OpenSSL 0.9.89)

Input: For w = 32-bit words, a 16-word integer product z = x - y and the modulus p = 225 — 2224 + 2192 4. 2% _ 1
Output: The (potentially incorrect) result 7 = z (mod p)

1. Form the nine, 8-word intermediate variables

So = (=z, =z, 2z, 2z, Z, 5, Z, Z7)
S5 = (0 0, 0, zu, 2z, z13, Zu, Z15)
S = (0 0, 0, 'z, z13, z1s, z5, 0)
S = ('z 2z, z0, O 0, 0, zi, z15)
Se = ('z, z0, 2z, Zz13, Z4, Z15 213, 28)
Ss = (zu, =z, z13, O 0, 0, 'z, zi0)
Se = (z1n, z13, zu, z15 O, 0, 'z, zu)
Sz = (z13, zwu, =15, 28 o, Zi, O, zi2)
Ss (zu, z5, 0, 2z, z0, zu, 0, ziz)
2. Compute
S = So+251 +2S,+S3+S4 — S5 —S¢ — S7 — Sg
= t+c-2%6
3. Compute
ro o= t-cp (mod 2%%°)

t —sign(c) - T[lcl] (mod 22%°)
for pre-computed T[i] =i-p.

4. If r > p (resp. r < 0) then update 7 « r — p (resp. r < r + p), return r.

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (3)

Issue 1: arithmetic on NIST-P-{256, 384}

> Observation(s):
> good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.

> bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,
1. triggered deliberately with special-form operands

(22 1) 224 £ 3.2128 1 i,
@2 -1)-224 £ 1.2% 1y,

X
Y

for random 0 < xg, yo < 2%, or
2. triggered randomly with probability ~ 10 -27%.

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (4)

Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [/, Section 8.1][%, Section 2.1])

A B

Knows G = E(FF,) = (G) of order 1,
(Pka)t, pks, sk

Knows G = E(FF,) = (G) of order 7,
pks, (pka)*, (ska)*

K &2, n-1) K&, n-1)
() D] () D]
QJ'« 4—[1\\,',(](, QZ’& 4—[/\1;](:

()
Q

QY

Ry [k3] Qg = [kz- k5] G Ry [k5]Qq = [k k3]

0} (i)
Use R, Use R,

Notes:

Notes:

e A high-level overview of how the above relates to OpenSSL can be found at

http://wiki.openssl.org/index.php/Diffie_Hellman
and
http://wiki.openssl.org/index.php/Elliptic_Curve_Diffie Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

e It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (4)

Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][¢, Section 2.4])
A B
Knows G = E(F,) = (G) of order 1, Knows G = E(FF,) = (G) of order 1,
pks, (pka)t, ska)t (vka)t, pks, skg
ka &(1,2,...,1-1) ks &{1,2,...,n—1)
Qa « [kal G Qg « [kg]G
Qa
Qs
R — [kal Qg = [ka - ks] G RY) — [ks]Qa = [ks - kal G
Use R“,I' Use RL’:

Applied Cryptology

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (4)

Issue 2: (opt-out) ephemeral-static EC-DHE

Notes:

e A high-level overview of how the above relates to OpenSSL can be found at
http://wiki.openssl.org/index.php/Diffie_Hellman

and
http://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

e It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).

Algorithm (EC-DH(E) key agreement [/, Section 8.1][%, Section 2.3])
A B
Knows G = E(F,) = (G) of order 1, Knows G = E(F,) = (G) of order 1,
pks, (pka)t, (ska)t (Pka)', pks, sks
ks &{1,2,...,n—1)
Qg « [ks]G
K &2, n-1)
o e
Q(r)
A
Qs
R« [k3] Qs = [K3 - ks] G Ry ksl Qg = [ks k3] G
Use l(f',: Use R',_,'J

Notes:

e A high-level overview of how the above relates to OpenSSL can be found at
http://wiki.openssl.org/index.php/Diffie_Hellman

and
http://wiki.openssl.org/index.php/Elliptic_Curve_Diffie Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

e It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (5)

Issue 2: (opt-out) ephemeral-static EC-DHE

> Observation(s):
> good: the key agreement is more efficient (for the server).

> good: input points are validated by testing whether
?
P} = Pl+asPy+ag

given P = (Py, Py).

> bad: ephemeral-static EC-DHE is the defaulti.e.,

> uses a per-invocation (of the library) rather than a per-session key, unless
> one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE

which means kg is a static, fixed target for any attack.

> bad: if we select P = (Py, P) as follows
1. Select P, such that during the computation of the RHS ' = (P2 +a4) - Py +as (mod p)

o thestep f) = P2 (mod p) does not trigger the bug, and
P . .
" Ve qosdrtredue oty
2. Compute Py = V¥ (mod p).
then P passes validation, but is on some curve E’ rather than E.

© Daniel Page {
git # 8178615 @ 2024-04-24

pplied Cryptology

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (6)

An attack!

Notes:

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the
secret key, sometimes with a single well-chosen ciphertext.

— Biham et. al. [1, Page 1]

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7)

An attack!

> Scenario:
> given the following interaction between an attacker & and a target 7

1 algorithm RSA.Dec((N, d), ¢) begin
2 Pre-compute I'T = (N, p,) from N
3 & « MontMuL(TT, ¢, p* mod N)
4 # « MontMuL(T], ¢, p*> mod N)

c 5 fori = |d| — 2 downto 0 do
6
7
8
9

| m = RSA.Dec((N, d),c) 7 < MonTMuL(IT, 7,)
D =¢! (mod N) ifd; = 1 then
| # < MontMuL(TT, 7,)
- end
Sl - 10 end
""" n return MontMuL(I1, 7,1)
12 end

m (N, d)

> and noting that

> there are no countermeasures implemented,
> the Montgomery multiplication implementation is FIOS-based [3],
> the (w X w)-bit integer multiplier hardware has a bug: when computing r = x X y if

x#a V y#B = ris correct
x=a A y=p = risincorrect

for some known (but arbitrary) a and .
»> how can & mount a successful attack, i.e., recover d ?

© Daniel Page ¢

Applied Cryptology

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (8)

An attack!
> Attack [1, Section 4.2]:

> in some t-th step, &

> knows some more-significant portion of the binary expansion of 4, and
> aims to recover d;, the next less-significant unknown bit,

> select a ¢ so during decryption when i = t and just after line #6

dj suchthat 7 = a
dj suchthat ¢ =8

i.e., @ and B occur in the representations of 7 and ¢,
> this selection means
d =0 = F#isnotmultipliedbyé¢ = thebugis not triggered
di=1 = 7is multiplied by ¢ = thebugis triggered
> test whether ,
m® (mod N) = ¢

and infer

mis correct = thebugwasnottriggered = d;=0
mis incorrect = the bugwas

triggered = d;=1

Notes:

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (9)

An attack!

Feature Biham et. al. [1, Section 4.2] = Brumley et. al. [2, Section 3]
Target Fixed d Fixed ks
Input Arbitrary poisoned Controlled distinguisher

3 *
integer ¢ € Z

Left-to-right

Computation . o
binary exponentiation

Re-encrypt m using e,

Leak
cakage check against ¢

e

Applied Cryptology

point Qg = [kg] G € E(]Fp)

Left-to-right (modified)
WNAF scalar multiplication

Handshake success/failure

git # c8178615 @ 2024-04-24

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (10)

A patch?

> Epilogue:
> good(ish):

Notes:

Quote

already patched and only affects obsolete Linux distributions.

We appreciate you reporting this issue to us but, unfortunately, we aren’t inclined to handle this vulnerability because it is

—CERT

https://jscholarship.library. jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

e ()

Notes:

o The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but
OpenSSL 0.9.8¢ was released in2007 (i.e., much earlier).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8¢ (10)
A patch?

Notes:

> Epllogue: e The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but
OpenSSL 0.9.8¢ was released in2007 (i.e., much earlier).

> bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version Percentage Distribution OSSL Version CVEs
0.9.8e-fips-rhel5 37.25 Debian Squeeze (6.0) 0.9.80 11
0.9.8g 14.50 Debian Lenny (5.0) 0.9.8g 24
0.9.7a 7.02 Debian Etch (4.0) 0.9.8¢ 26
0.9.80 4.76 RHEL 6 0.9.8¢/1.0.0-fips 0/14
1.0.0-fips 4.36 RHEL 5 0.9.7a/0.9.8e-fips 14/0
0.9.7d 291 RHEL 4 0.9.6b/0.9.7a 9/14
0.9.8n 2.75 Fedora 18 1.0.1¢c 3
0.9.7¢ 1.94 Fedora 17 1.0.0i 3
0.9.8¢ 1.80 Fedora 16 1.0.0e 9
0.9.8m 1.74

0.9.8¢ 1.72 Table 3: Default OpenSSL versions shipping with popular
0.9.8r 1.71 Linux distributions.

Table 2: Most popular OpenSSL versions on the Internet.

https://jscholarship.library. jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

Daniel Pag

Applied Cryptology

Unit summary (1)

Notes:
> Summary:

http://memegenerator.net

Unit summary (2)

> Summary: what have we done includes

1. exposed some low-level detail:

> concrete versus abstract (e.g., AES versus generic block cipher),

> written standards (e.g., FIPS-197 versus lecture slides),
> e

2. highlighted some high-level principles:

> most effective implementation will be domain-specific,

> apply adversarial thinking to everything,

> need for and value in well-considered trade-offs,

> don’t over-optimise to the point efficiency > security,

> apply “inverse Postel’s Law”, i.e., be very strict re. what you accept as input,
>

3. focused on some high-level outcomes:
> improved

awareness
understanding
skills = ability to engage with problems, produce solutions, ...

> general concepts (versus specific examples) = long-term (versus short-term) value.

lied Cryptology E git # 8178615 @ 2024-04-24

Unit summary (3)

> Summary: what haven’t we done includes

1. greater depth, i.e., more X for X € COMS30048:

> more implementation
o platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
e constraints (e.g., from use-case, platform, tooling, ...)
e co-design (e.g., hardware/software, specification/implementation, ...)
L

more attacks

more countermeasures

more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
more protocols (e.g., DNSSEC, IPSec, ...)

yvyvyy

2. greater breadth, i.e., more X for X ¢ COMS30048:

> hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
> formal verification

> key management (e.g., secure generation, storage, and erasure, ...)

'S

>

>

social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
certification and standardisation processes

Notes:

Notes:

References

E. Biham, Y. Carmeli, and A. Shamir. “Bug Attacks”. In: Advances in Cryptology (CRYPTO). Vol. 5157. LNCS. Springer-Verlag,
2008, pp. 221-240 (see pp. 23, 27, 29).

B. Brumley et al. “Practical realisation and elimination of an ECC-related software bug attack”. In: Topics in Cryptology
(CT-RSA). LNCS 7178. Springer-Verlag, 2012, pp. 171-186 (see pp. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31-34).

C.K. Kog, T. Acar, and B.S. Kaliski. “Analyzing and comparing Montgomery multiplication algorithms”. In: IEEE Micro 16.3
(1996), pp. 26-33 (see p. 25).

P.D. Martin et al. Classifying Network Protocol Implementation Versions: An OpenSSL Case Study. Tech. rep. 13-01. Johns Hopkins
University, 2013. urL: http://www.michaelrushanan.org/pdf/martin.pdf (see pp. 31-34).

H. Reimann. BN_nist_mod_384 gives wrong answers. openss1l-dev mailing list #1593. 2007. urr:
http://marc.info/?t=119271238800004 (see p. 7).

J.A. Solinas. Generalized Mersenne Numbers. Tech. rep. CORR 99-39. Centre for Applied Cryptographic Research (CACR),
University of Waterloo, 1999 (see p. 9).

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. Internet Engineering Task Force (IETF)
Request for Comments (RFC) 5246. 2008. urL: http://tools.ietf.org/html/rfc5246 (see pp. 15,17, 19).

E. Rescorla. Diffie-Hellman Key Agreement Method. Internet Engineering Task Force (IETF) Request for Comments (RFC) 2631.
1999. urL: http://tools.ietf.org/html/rfc2631 (see pp. 15,17, 19).

Applied Cryptology K BR git # c8178615 @ 2024-04-24

Notes:

