
COMS30048 lecture: week #20

▶ Agenda: explore (pseudo-)random bit generation, via
1. an “in theory”, i.e., design-oriented perspective, and
2. an “in practice”, i.e., implementation-oriented perspective.

▶ Caveat!

∼ 2 hours ⇒ introductory, and (very) selective (versus definitive) coverage.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

COMS30048 lecture: week #20

▶ Bad news: in theory, we need to consider each of
1. random bit, i.e., an

x ∈ {0, 1}
which is random,

2. random bit sequence, i.e., an
x ∈ {0, 1}n

which is random (e.g., for an AES cipher key k),
3. random number, i.e., an

x ∈ {0, 1, . . . ,n − 1}
which is random (e.g., for an RSA modulus N = p · q).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

COMS30048 lecture: week #20

▶ Good news: in practice, we don’t because
▶ 1. ⇒ 2.

• concatenate n random bits together, i.e.,

x = x0 ∥ x1 ∥ · · · ∥ xn−1,

• produce x as output.
▶ 2. ⇒ 3.
▶ if n = 2n′ for some integer n′, then

• generate an n′-bit sequence x′ per the above,
• interpret x′ as the integer

x =
i<n′∑
i=0

x′i ,

• produce x as output.

▶ if n , 2n′ for any integer n′, then

• let n′ be the smallest integer such that 2n′ > n,
• generate an n′-bit sequence x′ per the above,
• interpret x′ as the integer

x =
i<n′∑
i=0

x′i ,

• if x ≥ n, reject (or discard) it and try again; otherwise, if x < n, produce x as output.

∴ we can focus on random bits (and ignore numbers).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (1)
Entropy

http://xkcd.com/936

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://xkcd.com/936
mailto:csdsp@bristol.ac.uk

Part 1: in theory (2)
Entropy

Definition

Pp

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2n possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

▶ Example: given a 32-bit sequence x,
▶ if x is random, then it has 32 bits of entropy,
▶ if x0 = 0 and x1 = 1 (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
▶ if HW(x) = 14 (i.e., x has Hamming weight 14), then it has ∼ 29 bits of entropy.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (2)
Entropy

Definition

Pp

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2n possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

▶ Example: given a 32-bit sequence x,
▶ if x is random, then it has 32 bits of entropy,
▶ if x0 = 0 and x1 = 1 (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
▶ if HW(x) = 14 (i.e., x has Hamming weight 14), then it has ∼ 29 bits of entropy.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)
Entropy

Definition

Pp

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

▶ Example (see [8, Section 5.2], or [14, Section 3]):
1. hardware-based:
▶ time between emission of (e.g., α or β) particles during radioactive decay,
▶ thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
▶ frequency instability (or “jitter”) of a ring oscillator,
▶ fluctuation of hard disk seek-time and access latency,
▶ noise resulting from a disconnected audio input (or ADC),
▶ ...

2. software-based:
▶ a high resolution system clock or cycle counter,
▶ elapsed time between user input (e.g., key-presses or mouse movement),
▶ content of input/output buffers (e.g., disk caches),
▶ operating system state (e.g., load) or events (e.g., network activity),
▶ ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)
Entropy

Definition

Pp

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

▶ Example (see [8, Section 5.2], or [14, Section 3]):
1. hardware-based:
▶ time between emission of (e.g., α or β) particles during radioactive decay,
▶ thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
▶ frequency instability (or “jitter”) of a ring oscillator,
▶ fluctuation of hard disk seek-time and access latency,
▶ noise resulting from a disconnected audio input (or ADC),
▶ ...

2. software-based:
▶ a high resolution system clock or cycle counter,
▶ elapsed time between user input (e.g., key-presses or mouse movement),
▶ content of input/output buffers (e.g., disk caches),
▶ operating system state (e.g., load) or events (e.g., network activity),
▶ ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (4)
Entropy

Definition

Pp

An entropy source is a construction, based on a noise source, which provides a means of generating a conditioned entropic
output.

Model [16, Section 2.2]

Pp

Noise
source Digitisation Post-processing Conditioning

Health
test

GetEntropy

HealthTest

GetNoise

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (5)
Randomness

Definition

Pp

Per [15, Section 4], an ideal random bit-sequence

x = ⟨x0 , x1 , . . . xn−1⟩

will exhibit the following properties

1. unpredictable ⇒ the probability of guessing xi is close to 1
2

2. unbiased ⇒ xi = 0 and xi = 1 occur with equal probability
3. uncorrelated ⇒ xi and xj are statistically independent

and contain n bits of entropy.

Definition

Pp

Per [15, Section 4], a pseudo-random bit-sequence

x = ⟨x0 , x1 , . . . xn−1⟩

“looks random”, i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus
likely contains less than n bits of entropy.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (5)
Randomness

Definition

Pp

Per [15, Section 4], an ideal random bit-sequence

x = ⟨x0 , x1 , . . . xn−1⟩

will exhibit the following properties

1. unpredictable ⇒ the probability of guessing xi is close to 1
2

2. unbiased ⇒ xi = 0 and xi = 1 occur with equal probability
3. uncorrelated ⇒ xi and xj are statistically independent

and contain n bits of entropy.

Definition

Pp

Per [15, Section 4], a pseudo-random bit-sequence

x = ⟨x0 , x1 , . . . xn−1⟩

“looks random”, i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus
likely contains less than n bits of entropy.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)
(Pseudo-)random bit generators

Definition

Pp

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG ≡ NRBG ≃ entropy source.

▶ Idea: informally at least,

TRBG
▶ unpredictable,
▶ hardware-based,
▶ may have high latency,
▶ can be high quality.

PRBG
▶ predictable,
▶ software-based,
▶ can have low latency,
▶ may be low quality.

∴ we’ll consider a hybrid construction.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)
(Pseudo-)random bit generators

Definition

Pp

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG ≡ NRBG ≃ entropy source.

▶ Idea: informally at least,

TRBG
▶ unpredictable,
▶ hardware-based,
▶ may have high latency,
▶ can be high quality.

PRBG
▶ predictable,
▶ software-based,
▶ can have low latency,
▶ may be low quality.

∴ we’ll consider a hybrid construction.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (7)
(Pseudo-)random bit generators

Definition

Pp

Consider a deterministic, polynomial-time algorithm G. Given a seed ς ∈ {0, 1}nς as input, it produces G(ς) ∈ {0, 1}nr as
output where nr = f (nς) for some polynomial function f . As such, we call G a Pseudo-Random Generator (PRG) if

1. for every nς it holds that nr > nς , and

2. for all polynomial-time destinguishers D, there exists a negligible function negl such that

| Pr[D(G(ς)) = 1] − Pr[D(r) = 1] | ≤ negl(nς)

where ς and r are chosen uniformly at random from {0, 1}nς and {0, 1}nr respectively.

Syntax

Pp

Having fixed the (finite) space S of states, a concrete Pseudo-Random Generator (PRG) is defined by

1. an algorithm Seed : Z × {0, 1}nς → S that
▶ accepts a security parameter and an nς-bit seed as input, and
▶ produces an initial state as output

2. an algorithm Update : S → S × {0, 1}nb that
▶ accepts a current state as input, and
▶ produces a next state and an nb-bit block of pseudo-random bits as output.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (7)
(Pseudo-)random bit generators

Definition

Pp

Consider a deterministic, polynomial-time algorithm G. Given a seed ς ∈ {0, 1}nς as input, it produces G(ς) ∈ {0, 1}nr as
output where nr = f (nς) for some polynomial function f . As such, we call G a Pseudo-Random Generator (PRG) if

1. for every nς it holds that nr > nς , and

2. for all polynomial-time destinguishers D, there exists a negligible function negl such that

| Pr[D(G(ς)) = 1] − Pr[D(r) = 1] | ≤ negl(nς)

where ς and r are chosen uniformly at random from {0, 1}nς and {0, 1}nr respectively.

Syntax

Pp

Having fixed the (finite) space S of states, a concrete Pseudo-Random Generator (PRG) is defined by

1. an algorithm Seed : Z × {0, 1}nς → S that
▶ accepts a security parameter and an nς-bit seed as input, and
▶ produces an initial state as output

2. an algorithm Update : S → S × {0, 1}nb that
▶ accepts a current state as input, and
▶ produces a next state and an nb-bit block of pseudo-random bits as output.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (8)
(Pseudo-)random bit generators

▶ Translation: assuming nr = l · nb for some l, then

1. use TRBG {

 generate a sufficiently large,
high-entropy seed ς

2. use PRBG {

θ[0] ← Seed(λ, ς)
θ[1] , b[0] ← Update(θ[0])
θ[2] , b[1] ← Update(θ[1])

...
θ[i + 1] , b[i] ← Update(θ[i])

...

meaning that
b = b[0]︸︷︷︸

nb-bits

∥ b[1]︸︷︷︸
nb-bits

∥ · · · ∥ b[l − 1]︸ ︷︷ ︸
nb-bits︸ ︷︷ ︸

l · nb = nr-bits

≡ G(ς)

provides the output required per the PRG definition.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (9)
(Pseudo-)random bit generators

http://xkcd.com/221

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://xkcd.com/221
mailto:csdsp@bristol.ac.uk

Part 1: in theory (10)
(Pseudo-)random bit generators

▶ Problem: we need to assess the quality of our construction (and output from it).
▶ Solution:

1. for some instanciations, we can develop a proof,
2. for some instanciations, we must apply
▶ online (e.g., continuously or periodically during use), and/or
▶ offline (i.e., once before use)

statistical tests (see, e.g., [8, Section 5.4]) to sample outputs; note that
▶ the intention is to detect weakness (meaning a PRBG can only be rejected by a test),
▶ the conclusion is itself probabilistic, meaning use of multiple tests amplifies confidence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (11)
(Pseudo-)random bit generators

Definition

Pp

A PRBG is said to pass all statistical tests iff. no polynomial-time algorithm can, with probability greater than 1
2 ,

distinguish the output from a ideal random bit-sequence of the same length.

Definition

Pp

A PRBG is said to pass the next-bit test iff. no polynomial-time algorithm can, with probability greater than 1
2 , predict

the (n + 1)-th bit of output given the previous n bits.

Theorem (Yao [11])

Pp

If a PRBG passes the next-bit test, it will pass all statistical tests.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (12)
(Pseudo-)random bit generators

Definition

Pp

Per [15, Section 4], imagine an attacker compromises the PRBG state at time t: we term a PRBG back-tracking resistant
(resp. prediction resistant) if said attacker cannot distinguish between an (unseen) PRBG output at time t′ < t (resp.
t′ > t) and an ideal random bit-sequence of the same length.

Definition

Pp

A Cryptographically Secure Pseudo-Random Bit Generator (CS-PRBG) is simple a PRBG whose properties make it
suitable for use within a cryptographic use-case. A CS-PRBG should (at least)

1. be a PRBG of sufficient quality, i.e., pass the next-bit test, and

2. resist state compromise attacks, i.e., be back-tracking and prediction resistant.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (13)
(Pseudo-)random bit generators

▶ Problem: our construction is deterministic, so
▶ the same ςwill yield the same θ[0] and hence any θ[j] for j > 0,
▶ recovery of ς allows computation of any θ[j] for j ≥ 0,
▶ recovery of θ[i] allows computation of any θ[j] for j > i,
▶ the set S is finite, so per

ς θ[0] θ[1] · · · θ[t − 1] θ[t] θ[t + 1] · · · θ[t+c−1]
Seed Update Update Update Update Update Update Update

Update

tail cycle

period

the state, and thus also the output, will eventually cycle.

▶ Solution:
1. select parameters that mitigate such issues, and
2. introduce selected non-determinism.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (14)
(Pseudo-)random bit generators

Definition ([15, Figure 1])

Pp

θ[i]Seed

Update

θ[0]

θ[i]

θ[i + 1]

b[i]

entropy
source

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 1: in theory (14)
(Pseudo-)random bit generators

Definition ([15, Figure 1])

Pp

θ[i]Seed

Update

θ[0]

θ[i]

θ[i + 1]

b[i]

Wipe

Reseed

Test

θ[i + 1] =⊥

θ[i]

θ[i + 1]

θ[i]

θ[i + 1] ∈ {θ[i],⊥}

q[i] ∈ {false, true}

additional
input

additional
input

entropy
source

nonce

personalisation
input

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (1)

▶ (Sub-)agenda: explain selected, example designs, organised into 4 classes, i.e.,
1. “classic”,
2. software-oriented,
3. hardware-oriented,
4. system-oriented,

with a focus on design properties and trade-offs between them, e.g.,
▶ efficiency,
▶ security, i.e., quality of (pseudo-)random output,
▶ interface,
▶ assumptions,
▶ ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (2)
Class #1: “classic”

▶ Design: Linear-Feedback Shift Registers (LFSR) [5, 6].

Algorithm (type-1, or “external” or Fibonacci, LFSR)

Pp

θn−1 θn−2 θ1 θ0 outputinput

T 1 T 2 T n
−

1

T n

Algorithm (type-2, or “internal” or Galois, LFSR)

Pp

θn−1 θn−2 θ1 θ0 outputinput

T
n

T
n
−

1

T
n
−

2

T
1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (3)
Class #2: software-oriented

▶ Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.Seed)

Pp

Input: A security parameter λ, and a seed ς
Output: An initial state θ[0]

Use entropy provided by ς to perform the following steps:

1. Select two random (λ/2)-bit primes p and q such that p ≡ q ≡ 3 (mod 4), and compute N = p · q.

2. Select a random s ∈ {0, 1, . . . ,N − 1} such that gcd(s,N) = 1.

3. Compute s[0] = s2 (mod N).

4. Return θ[0] = (N, s[0]).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (3)
Class #2: software-oriented

▶ Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.Update)

Pp

Input: A current state θ[i] = (N, s[i])
Output: A next state θ[i + 1], and nb = 1 bit pseudo-random output b[i]

1. Compute s[i + 1] = s[i]2 (mod N).

2. Let b[i] = s[i + 1] (mod 2), i.e., b[i] = LSB(s[i + 1]).

3. Return θ[i + 1] = (N, s[i + 1]) and b[i].

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (4)
Class #2: software-oriented

▶ Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.Seed)

Pp

Input: A security parameter λ, and a seed ς
Output: An initial state θ[0]

1. Use λ to select a block cipher with an nk-bit key size and nb-bit block size, e.g.,

3DES { nb = 64, nk = 192
AES-128 { nb = 128, nk = 128
AES-192 { nb = 128, nk = 192
AES-256 { nb = 128, nk = 256

2. Use entropy provided by ς to derive an nk-bit cipher key k (or pre-select a k for the PRBG).

3. Use entropy provided by ς to derive an nb-bit block s[0].

4. Return θ[0] = (k, s[0]).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (4)
Class #2: software-oriented

▶ Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.Update)

Pp

Input: A current state θ[i] = (k, s[i])
Output: A next state θ[i + 1], and nb-bit pseudo-random output b[i]

1. Compute t′ = Enc(k, t), where t is a nb-bit representation of the current time.

2. Compute b[i] = Enc(k, t′ ⊕ s[i]).

3. Compute s[i + 1] = Enc(k, t′ ⊕ b[i]).

4. Return θ[i + 1] = (k, s[i + 1]) and b[i].

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.Update)

Pp

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

49

10.2 DRBG Mechanisms Based on Block Ciphers

A block cipher DRBG is based on a block cipher

algorithm. The block cipher DRBG mechanism

specified in this Recommendation has been

designed to use any approved block cipher

algorithm and may be used by consuming

applications requiring various security strengths,

providing that the appropriate block cipher

algorithm and key length are used, and sufficient

entropy is obtained for the seed.

The maximum security strength that can be

supported by each DRBG based on a block

cipher is the security strength of the block cipher

and key size used; the security strengths for the

block ciphers and key sizes are provided in [SP

800-57].

10.2.1 CTR_DRBG

CTR_DRBG uses an approved block cipher

algorithm in the counter mode as specified in

[SP 800-38A]. The same block cipher algorithm

and key length shall be used for all block cipher

operations of this DRBG. The block cipher

algorithm and key length shall meet or exceed

the security requirements of the consuming

application.

CTR_DRBG is specified using an internal function (CTR_DRBG_Update). Figure 11

depicts the CTR_DRBG_Update function. This function is called by the instantiate,

generate and reseed algorithms to adjust the internal state when new entropy or additional

input is provided, as well as to update the internal state after pseudorandom bits are

generated. Figure 12 depicts the CTR_DRBG in three stages. The operations in the top

portion of the figure are only performed if the additional input is not null.

Table 3 specifies the values that shall be used for the function envelopes and

CTR_DRBG mechanism.

Table 3: Definitions for the CTR_DRBG

 3 Key

TDEA

AES-128 AES-192 AES-256

Supported security strengths See [SP 800-57]

Figure 11: CTR_DRBG Update Function

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.Instantiate)

Pp

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

51

The CTR_ DRBG may be

implemented to use the block

cipher derivation function

specified in Section 10.4.2

during instantiation and

reseeding. However, the

DRBG mechanism is specified

to allow an implementation

tradeoff with respect to the use

of this derivation function. The

use of the derivation function is

optional if either an approved

RBG or an entropy source

provide full entropy output

when entropy input is requested

by the DRBG mechanism.

Otherwise, the derivation

functon shall be used. Table 3

provides the lengths required

for the entropy_input,

personalization_string and

additional_input for each case.

When using TDEA as the

selected block cipher

algorithm, the keys shall be

handled as 64-bit blocks

containing 56 bits of key and 8

bits of parity as specified for

the TDEA engine specified in

[SP 800-67].

10.2.1.1 CTR_DRBG
Internal State

The internal state for the

CTR_DRBG consists of:

1. The working_state:

a. The value V of

outlen bits, which is

updated each time another outlen bits of output are produced.

Key V
reseed

counter
...

State

Block

Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

+

1

Figure 12: CTR-DRBG

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.Generate)

Pp

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

51

The CTR_ DRBG may be

implemented to use the block

cipher derivation function

specified in Section 10.4.2

during instantiation and

reseeding. However, the

DRBG mechanism is specified

to allow an implementation

tradeoff with respect to the use

of this derivation function. The

use of the derivation function is

optional if either an approved

RBG or an entropy source

provide full entropy output

when entropy input is requested

by the DRBG mechanism.

Otherwise, the derivation

functon shall be used. Table 3

provides the lengths required

for the entropy_input,

personalization_string and

additional_input for each case.

When using TDEA as the

selected block cipher

algorithm, the keys shall be

handled as 64-bit blocks

containing 56 bits of key and 8

bits of parity as specified for

the TDEA engine specified in

[SP 800-67].

10.2.1.1 CTR_DRBG
Internal State

The internal state for the

CTR_DRBG consists of:

1. The working_state:

a. The value V of

outlen bits, which is

updated each time another outlen bits of output are produced.

Key V
reseed

counter
...

State

Block

Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

+

1

Figure 12: CTR-DRBG

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.Reseed)

Pp

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

51

The CTR_ DRBG may be

implemented to use the block

cipher derivation function

specified in Section 10.4.2

during instantiation and

reseeding. However, the

DRBG mechanism is specified

to allow an implementation

tradeoff with respect to the use

of this derivation function. The

use of the derivation function is

optional if either an approved

RBG or an entropy source

provide full entropy output

when entropy input is requested

by the DRBG mechanism.

Otherwise, the derivation

functon shall be used. Table 3

provides the lengths required

for the entropy_input,

personalization_string and

additional_input for each case.

When using TDEA as the

selected block cipher

algorithm, the keys shall be

handled as 64-bit blocks

containing 56 bits of key and 8

bits of parity as specified for

the TDEA engine specified in

[SP 800-67].

10.2.1.1 CTR_DRBG
Internal State

The internal state for the

CTR_DRBG consists of:

1. The working_state:

a. The value V of

outlen bits, which is

updated each time another outlen bits of output are produced.

Key V
reseed

counter
...

State

Block

Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

+

1

Figure 12: CTR-DRBG

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (6)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [12].

Algorithm (RdRand entropy source)

Pp

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 7 OF 22

2. Random bits generated by the ES are combined, sampled by the synchronous

logic, and grouped into 256-bit blocks in a shift register.

3. Basic statistical tests are performed by the online health test logic (OHT) on each

256-bit block to check for potential failure modes of the ES.

4. The 256-bit blocks in the online self-tested entropy (OSTE) queue are

cryptographically processed into a 256-bit conditioned entropy pool by the

conditioning logic.

5. The conditioned entropy pool is used to reseed the DRBG.

6. The DRBG generates the final bits output by the RNG.

The rest of this section describes in detail each of the components, and how they operate

and interact.

2.2 Entropy source

The entropy source (ES) at the heart of the Intel RNG is a self-oscillating digital circuit

with feedback, shown in Figure 2 below.

Figure 2: Entropy source for the Intel RNG (from [8])

The ES is a dual differential jamb latch with feedback. It is a latch formed by two cross-

coupled inverters (nodes A and B). The circuit is self-clocking (heart_clock), and

designed such that when the clock is running, the circuit enters a metastable state. The

circuit then resolves to one of two possible states, determined randomly by thermal noise

in the system. The settling of the circuit is biased by the differential in the charges on the

capacitors (A caps and B caps). The state to which the latch resolves is the random bit of

output of the ES.

The circuit is also designed with feedback to seek out its metastable region. Based on

how the latch resolves, a fixed amount of charge is drained from one capacitor and added

http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (6)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [12].

Algorithm (RdRand TRBG)

Pp

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 6 OF 22

Digital Post-ProcessingRaw Entropy
Generation

Health &
Swellness

Testing
(OHT)

O
STE Q

u
eu

es (2x256 b
its)

Sh
ift R

egister (256 b
its)

Entropy
Source

(ES)

C
o

n
d

itio
n

ed
 Entro

p
y (C

E) (256 b
its)

C
o

n
d

itio
n

in
g

O
u

tp
u

t G
en

eratio
n

 &
R

eseed
in

g

Deterministic Random Bit
Generator (DRBG)

O
u

tp
u

t B
u

ffers (4x128 b
its)

Figure 1: Block diagram of the Intel RNG (adapted from [7])

Most modern RNGs, including the Intel Ivy Bridge design, consist of an entropy source

(ES) followed by digital post-processing logic. Raw output from entropy sources

generally contains detectable biases and other artifacts that distinguish the output from

random binary data. The purpose of the post-processing logic is to convert this raw

output into lower-bitrate, but higher-quality, random data.

The Intel RNG's post-processing logic is relatively sophisticated. Like many software-

based RNGs, the post-processing uses strong cryptography to prevent deficiencies in the

entropy source from leading to exploitable weaknesses. In particular, the RNG maintains

an entropy pool which is seeded using a relatively large amount of data from the ES.

Even if the ES is severely degraded, the final output will remain of high quality and

cryptographically strong and should appear indistinguishable from true random by

computationally-bounded adversaries (despite being nonrandom from an information

theoretic perspective).

One drawback of using post-processing is that defects in the entropy source become more

difficult to observe. As a result, users of the RNG have a more difficult time assessing the

quality of the underlying entropy source, and some catastrophic failure modes can

actually become difficult to detect. The Intel Ivy Bridge designers have employed several

strategies that help mitigate these concerns, including the incorporation of logic to

monitor the health of the entropy source. In addition, while raw access to entropy source

output is not available on production parts, test parts can provide direct access to entropy

source outputs.

The Intel RNG operates as follows:

1. The entropy source (ES) is a self-clocking circuit which operates asynchronously

and generates random bits at a high rate (about 3 GHz).

http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (7)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [12].

Listing (RdRand interface)

Pp

1 bool rdrand64(uint64_t* r) {
2 bool success;
3
4 asm("rdrand %0 ; setc %1"
5 : "=r" (*r), "=qm" (success));
6
7 return success;
8 }

Listing (RdRand interface)

Pp

1 bool rdrand64_retry(uint64_t* r, int l) {
2 int i = 0;
3
4 do {
5 if(rdrand64(r)) {
6 return true;
7 }
8 } while(i++ < l);
9

10 return false;
11 }

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 1994(ish):
▶ maintain entropy pool θ[i], injecting entropy, e.g., from system-related events,
▶ define a predicate

P(θ[i]) =
{

false if estimated entropy in θ[i] is deemed insufficient
true if estimated entropy in θ[i] is deemed sufficient

based on the concept of entropy estimation,
▶ expose θ[i] to user-space via the (pseudo) files

write to /dev/random ≃ inject entropy into θ[i]

read from /dev/random ≃
{

if P(θ[i]) = false, block then sample from PRNG (re)seeded from θ[i]
if P(θ[i]) = true, then sample from PRNG (re)seeded from θ[i]

read from /dev/urandom ≃ sample from PRNG (re)seeded from θ[i]

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2014(ish):
▶ update re. additional system call

ssize_t getrandom(void* x, size_t n, unsigned int flags)

where

getrandom ≃

{
if PRNG has not been initialised, then do block
if PRNG has been initialised, then do not block

▶ this yields clear(er) semantics, and avoids need for file handle.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2016(ish):
▶ update re. PRNG, which is changed from being based on SHA-1 to ChaCha20,
▶ this yields, e.g., lower latency with respect to sampling output.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2020(ish):
▶ update re. file-based semantics

/dev/urandom ≃ do not block

/dev/random ≃

{
if PRNG has not been initialised, then do block
if PRNG has been initialised, then do not block

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Conclusions

Quote

Pp

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

– von Neumann (http://en.wikiquote.org/wiki/Randomness)

Quote

Pp

The generation of random numbers is too important to be left to chance.

– Coveyou (http://en.wikiquote.org/wiki/Randomness)

Quote

Pp

The design of such pseudo-random number generation algorithms, like the design of symmetric encryption algorithms, is not
a task for amateurs.

– Eastlake, Schiller, and Crocker [14]

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://en.wikiquote.org/wiki/Randomness
http://en.wikiquote.org/wiki/Randomness
mailto:csdsp@bristol.ac.uk

Conclusions

▶ Take away points:
1. A high-quality source of randomness is fundamental to more or less every security proof: it

might be an assumption in in theory, but in practice this issue requires care.
2. Iff. you need to develop your own PRBG implementation, use a standard (e.g., NIST

SP800-90A [15]) design or framework ...
3. ... often such a design can leverage a primitive (e.g., a block cipher) you need anyway, thus

reducing effort, attack surface, etc.
4. Some golden rules:
▶ use a large, high-entropy seed,
▶ avoid reliance on a single entropy source where possible,
▶ opt for a cryptographically secure design and ensure it is parameterised correctly,
▶ hedge against failure via robust pre- and post-processing where need be,
▶ include quality tests on pseudo-randomness generation (e.g., alongside functional unit testing),
▶ don’t compromise security for efficiency,
▶ ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

mailto:csdsp@bristol.ac.uk

Additional Reading

▶ Wikipedia: Randomness. url: https://en.wikipedia.org/wiki/Randomness.

▶ Wikipedia: Pseudorandomness. url: https://en.wikipedia.org/wiki/Pseudorandomness.

▶ Wikipedia: /dev/random. url: https://en.wikipedia.org/wiki/dev/random.

▶ Wikipedia: RDRAND. url: https://en.wikipedia.org/wiki/RDRAND.

▶ K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013.

▶ A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of Applied
Cryptography. CRC, 1996. url: http://cacr.uwaterloo.ca/hac/about/chap5.pdf.

▶ D. Johnston. Random Number Generators – Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De|G Press, 2018.

▶ D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for
Comments (RFC) 4086. 2005. url: http://tools.ietf.org/html/rfc4086.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Pseudorandomness
https://en.wikipedia.org/wiki/dev/random
https://en.wikipedia.org/wiki/RDRAND
http://cacr.uwaterloo.ca/hac/about/chap5.pdf
http://tools.ietf.org/html/rfc4086
mailto:csdsp@bristol.ac.uk

References

[1] Wikipedia: /dev/random. url: https://en.wikipedia.org/wiki/dev/random (see p. 43).

[2] Wikipedia: Pseudorandomness. url: https://en.wikipedia.org/wiki/Pseudorandomness (see p. 43).

[3] Wikipedia: Randomness. url: https://en.wikipedia.org/wiki/Randomness (see p. 43).

[4] Wikipedia: RDRAND. url: https://en.wikipedia.org/wiki/RDRAND (see p. 43).

[5] S.W. Golomb. Shift Register Sequences. 3rd ed. https://doi.org/10.1142/9361. Aegean Park Press, 2017 (see p. 25).

[6] M. Goresky and A. Klapper. Algebraic Shift Register Sequences. 1st ed. https://doi.org/10.1017/CBO9781139057448.
Cambridge University Press, 2012 (see p. 25).

[7] D. Johnston. Random Number Generators – Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De|G Press,
2018 (see p. 43).

[8] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of
Applied Cryptography. CRC, 1996. url: http://cacr.uwaterloo.ca/hac/about/chap5.pdf (see pp. 7, 8, 18, 43).

[9] K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013 (see
p. 43).

[10] L. Blum, M. Blum, and M. Shub. “A Simple Unpredictable Pseudo-Random Number Generator”. In: SIAM Journal on
Computing 15.2 (1986), pp. 364–383 (see pp. 26, 27).

[11] A.C. Yao. “Theory and application of trapdoor functions”. In: Symposium on Foundations of Computer Science (SFCS). 1982,
pp. 80–91 (see p. 19).

[12] Intel Digital Random Number Generator (DRNG) – Software Implementation Guide. Tech. rep. Intel Corp., 2012. url:
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_
Guide_final_Aug7.pdf (see pp. 34–36).

[13] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry. American National Standards
Institute (ANSI) Standard X9.31. 1993 (see pp. 28, 29).

[14] D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request
for Comments (RFC) 4086. 2005. url: http://tools.ietf.org/html/rfc4086 (see pp. 7, 8, 41, 43).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

https://en.wikipedia.org/wiki/dev/random
https://en.wikipedia.org/wiki/Pseudorandomness
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/RDRAND
https://doi.org/10.1142/9361
https://doi.org/10.1017/CBO9781139057448
http://cacr.uwaterloo.ca/hac/about/chap5.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://tools.ietf.org/html/rfc4086
mailto:csdsp@bristol.ac.uk

References

[15] Recommendation for Random Number Generation Using Deterministic Random Bit Generators. National Institute of Standards
and Technology (NIST) Special Publication 800-90A. 2012. url: http://csrc.nist.gov (see pp. 10–13, 20, 22, 23, 30–33, 42).

[16] Recommendation for the Entropy Sources Used for Random Bit Generation. National Institute of Standards and Technology
(NIST) Special Publication 800-90B. 2012. url: http://csrc.nist.gov (see p. 9).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://csrc.nist.gov
http://csrc.nist.gov
mailto:csdsp@bristol.ac.uk

