Applied Cryptology

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. (csdsp@bristol.ac.uk)

April 24, 2024

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

Agenda: explore RSA [8] via

- 1. an "in theory", i.e., design-oriented perspective, and
- 2. an "in practice", i.e., implementation-oriented perspective,
- 2.1 multi-precision (or "big") integer arithmetic,
- 2.2 exponentiation,
- 2.3 modular mulitiplication.
- Caveat!
 - ~ 2 hours \Rightarrow introductory, and (very) selective (versus definitive) coverage.

Diversity of

Part 1: in theory (1)

- **Recall**: the RSA primitive can be used as
- an asymmetric encryption scheme
 - 1. generation of a public and private key pair: given a security parameter λ

 $\mathsf{RSA.KeyGen}(\lambda) = \begin{cases} 1 \text{ select random } \frac{\lambda}{2} \text{-bit primes } p \text{ and } q \\ 2 \text{ compute } N = p \cdot q \\ 3 \text{ compute } \Phi(N) = (p-1) \cdot (q-1) \\ 4 \text{ select random } e \in \mathbb{Z}_N^* \text{ such that } \gcd(e, \Phi(N)) = 1 \\ 5 \text{ compute } d = e^{-1} \pmod{\Phi(N)} \\ 6 \text{ return public key } (N, e) \text{ and private key } (N, d) \end{cases}$

2. encryption of a plaintext $m \in \mathbb{Z}_{N}^{\times}$:

 $c = \text{RSA.Enc}((N, e), m) = m^e \pmod{N}$

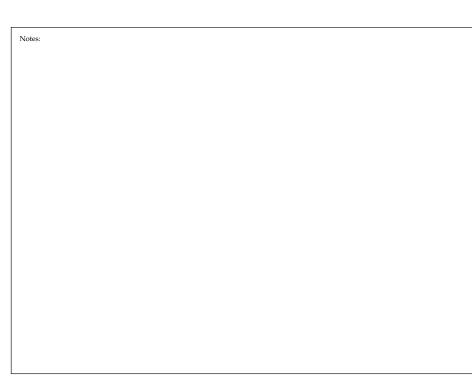
3. decryption of a ciphertext $c \in \mathbb{Z}_{N}^{\times}$:

 $m = \mathsf{RSA.Dec}((N, d), c) = c^d \pmod{N}$

▶ a digital signature scheme: (very) roughly, we just set

 $\begin{array}{rcl} \mathsf{RSA.SIG} &\simeq & \mathsf{RSA.Dec} \\ \mathsf{RSA.Ver} &\simeq & \mathsf{RSA.Enc} \end{array}$

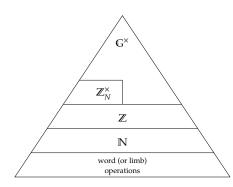
© Daniel Page (csdsp@bristol.ac. Applied Cryptology



Part 2: in practice (1)

Challenge:

given a functionality "stack", i.e.,



bridge gap between what we have (bottom) and want (top),

• an **implementation strategy** for doing so must consider many

•	metrics	:	parameter set, functionality, latency, throughput, memory footprint, hardware versus software, data-path width,	
		÷		

Part 2.1: in practice (1)

► Problem:

• we want to represent and perform operations on integers, i.e., elements of

 $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, +1, +2, +3, \ldots\},\$

Diversity of

▶ a micro-processor equipped with a *w*-bit word size approximates Z using an appropriate data type; e.g., in C we get

• the magnitude of some $x \in \mathbb{Z}$ can be much larger than a *w*-bit word.

► Solution:

1. a data structure to represent *x*, and

2. algorithms to operate on instances of said data structure.

Notes:			



© Daniel Page ⟨csdsp@bristol.ac.uk⟩ Applied Cryptology Part 2.1: in practice (2)

► Idea:

1. represent *x* using a base-*b* expansion

$$\hat{x} = \langle \hat{x}_0, \hat{x}_1, \dots, \hat{x}_{n-1} \rangle$$

 $\mapsto x$

$$= \pm \sum_{i=0}^{n-1} \hat{x}_i \cdot b^i$$

where each $\hat{x}_i \in X = \{0, ..., b - 1\},\$

- 2. select $b = 2^w$ such that
 - each \hat{x}_i is termed a **limb**,
 - we can represent an $x \gg 2^w$, and
 - digits of *x* can be dealt with conveniently by the processor.

© Daniel Page (<u>csdsp@bristol.ac.uk</u>) Applied Cryptology			
Best 0.1 is see at i.e. (2)			

eit # c8178615 @ 2024-04-24

Part 2.1: in practice (3)

► Idea:

1. represent $x \in \{0, 1, \dots, 2^w - 1\}$ using an instance of

typedef uint32_t limb_t;

2. represent $x \in \mathbb{N}$ using an array

limb_t x[l_x]

or a pointer to such an array, e.g.,

limb_t* x

plus an associated length 1_x.

3. represent $x \in \mathbb{Z}$ using an instance of

Listing	
2 limb_t 3 4 int	<pre>structmpz_t { d[MPZ_LIMB_MAX]; l; s;</pre>

where

- **x**.d is a fixed-size array of limbs representing the magnitude of *x*,
- x.1 is the number limbs used within x.d, and
- **x**.**s** is the sign of *x*.

© Daniel Page (csdsp@bristol.ac.uk)	😹 🌿 University of
Applied Cryptology	University of BRISTOL

Part 2.1: in practice (4) Algorithms for $x \in \{0, 1, \dots, 2^w - 1\}$

- Step #1: limb-focused operations, e.g., "add with carry".
 - the idea is to support computation of

$$r_1 \cdot b + r_0 = t \leftarrow e + f + g$$

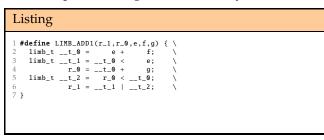
- i.e., a software-based version of a hardware-based full-adder cell (where b = 2), for $b = 2^w$, the result *r* has at most w + 1 bits because

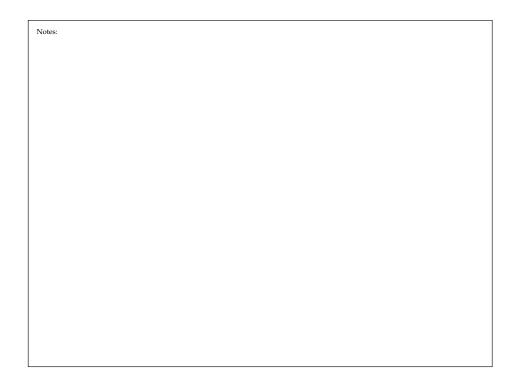
$$(2^{w}-1) + (2^{w}-1) + 1 = 2^{w+1} - 1 < 2^{w+1}.$$

© Daniel Page (csdsp@bristol.ac.uk)	Conversity of	
	Conversity of	
Applied Cryptology	BRISTOL	git # c8178615 @ 2024-04-24

Part 2.1: in practice (4) Algorithms for $x \in \{0, 1, \dots, 2^w - 1\}$

Step #1: limb-focused operations, e.g., "add with carry".





Part 2.1: in practice (4) Algorithms for $x \in \{0, 1, \dots, 2^w - 1\}$

Step #1: limb-focused operations, e.g., "add with carry".

Listing
<pre>1 #define LIMB_ADD1(r_1,r_0,e,f,g) { 2 dlimb_tt = (dlimb_t)(e) + 3</pre>

Notes:			

© Daniel Page (csdsp®bristol.ac.uk) Applied Cryptology	git # c8178615 @ 2024-04-24

Part 2.1: in practice (4) Algorithms for $x \in \{0, 1, \dots, 2^{\omega} - 1\}$

Step #1: limb-focused operations, e.g., "add with carry".

Listing	
1 #define LIMB_ADD1(r_1,r_0,e,f,g) { 2 asm("movl %2,%0 ; movl \$0,%1 ; \ 3 addl %3,%0 ; adcl \$0,%1 ; \ 4 addl %4,%0 ; adcl \$0,%1 ; \ 5 6 : "+&r" (r_0), "+&r" (r_1) \ 7 : "r" (e), "r" (f), \ 8 "r" (g) \ 9 : "cc"); \ 10 }	

Notes:

git # c8178615 @ 2024-04

Part 2.1: in practice (5) Algorithms for $x \in \{0, 1, \dots, 2^w - 1\}$

- Step #1: limb-focused operations, e.g., "multiply-accumulate with carry".
 - the idea is to support computation of

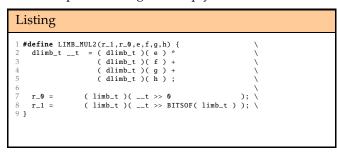
$$r_1 \cdot 2^w + r_0 = t \leftarrow e \cdot f + g + h,$$

• for $b = 2^w$, the result *r* has at most $2 \cdot w$ bits because

$$(2^{w}-1) \cdot (2^{w}-1) + (2^{w}-1) + (2^{w}-1) = 2^{2w}-1 < 2^{2 \cdot w},$$

Part 2.1: in practice (5) Algorithms for $x \in \{0, 1, ..., 2^{w} - 1\}$

Step #1: limb-focused operations, e.g., "multiply-accumulate with carry".



Notes:			

Part 2.1: in practice (5) Algorithms for $x \in \{0, 1, \dots, 2^w - 1\}$

Step #1: limb-focused operations, e.g., "multiply-accumulate with carry".

Listing	
<pre>1 #define LIMB_MUL2(r_1,r_0,e,f,g,h) { 2 asm("movl %2,%%eax ; mull %3 3 addl %4,%%eax ; adcl \$0,%%edx 4 addl %5,%%eax ; adcl \$0,%%edx 5 movl %%eax,%0 ; movl %%edx,%1 6 7 : "=&g" (r_0), "=&g" (r_1) 8 : "1" (e), "r" (f), 9 "r" (g), "0" (h) 10 : "%eax", "%edx", "cc") 11 }</pre>	

Notes:			

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology	git # c8178615 @ 2024-04-24

Part 2.1: in practice (6) Algorithms for $x \in \mathbb{N}$

- ► Step #2: N-focused operations, e.g., "long addition".
 - the idea is to support computation of

x	=	623 ₍₁₀₎	\mapsto		0	0	1	1	1	1	0	1	1	
у	=	567(10)	\mapsto		1	1	1	0	0	1	0	0	0	+
С	=			1	1	1	1	1	1	0	0	0	0	-
r	=	$1190_{(10)}$	\mapsto	1	0	0	1	0	0	0	0	1	1	

i.e., a software-based version of a hardware-based ripple-carry adder (where b = 2), the result *r* has at most max(l_x , l_y) + 1 limbs.

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology

University of BRISTOL

git # c8178615 @ 2024-04-2

Part 2.1: in practice (6) Algorithms for $x \in \mathbb{N}$

Step #2: N-focused operations, e.g., "long addition".

Algorithm (N-ADD)	Listing			
Input: Two unsigned, base- <i>b</i> integers <i>x</i> and <i>y</i> Output: An unsigned, base- <i>b</i> integer $r = x + y$ 1 $l_x \leftarrow x , l_y \leftarrow y , l_r \leftarrow \max(l_x, l_y)$ 2 $r \leftarrow 0, c \leftarrow 0$ 3 for $i = 0$ upto $l_r - 1$ step +1 do 4 $ r_i \leftarrow (x_i + y_i + c) \mod b$ 5 $ if(x_i + y_i + c) < b$ then $c \leftarrow 0$ else $c \leftarrow 1$ 6 end 7 return <i>r</i> , <i>c</i>	<pre>1 limb_t mpn_add(limb_t* r, const limb_t* x, int l_x, 2 const limb_t* y, int l_y) { 3 int l_r = MAX(l_x, l_y); 5 6 limb_t c = 0; 7 for(int i = 0; i < l_r; i++) { 9 limb_t d_x = (i < l_x) ? x[i] : 0; 10 limb_t d_y = (i < l_y) ? y[i] : 0; 11 12 LIMB_ADD1(c, r[i], d_x, d_y, c); 13 }</pre>			
	15 return c; 16 }			

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology

University of BRISTOL

Part 2.1: in practice (6) Algorithms for $x \in \mathbb{N}$

► Step #2: N-focused operations, e.g., "long addition".

Algorithm (IN-ADD)	Listing
Input: Two unsigned, base- <i>b</i> integers <i>x</i> and <i>y</i> Output: An unsigned, base- <i>b</i> integer $r = x + y$ 1 $l_x \leftarrow x , l_y \leftarrow y , l_r \leftarrow \max(l_x, l_y)$ 2 $r \leftarrow 0, c \leftarrow 0$ 3 for $i = 0$ upto $l_r - 1$ step +1 do 4 $ r_i \leftarrow (x_i + y_i + c) \mod b$ 5 $ $ if $(x_i + y_i + c) < b$ then $c \leftarrow 0$ else $c \leftarrow 1$ 6 end 7 return <i>r</i> , <i>c</i>	<pre>1 limb_t mpn_add(limb_t* r, const limb_t* x, int l_x, 2 const limb_t* y, int l_y) { 3 int l_r = MIN(l_x, l_y), i = 0; 5 limb_t c = 0; 7 while(i < l_r) { 9 limb_t d_x = x[i]; 10 limb_t d_y = y[i]; 11 LIMB_ADD1(c, r[i], d_x, d_y, c); i++; 13 } 14 while(i < l_x) { 15 limb_t d_x = x[i]; 16 limb_t d_y = y[i]; 17 LIMB_ADD0(c, r[i], d_x, c); i++; 18 } 19 while(i < l_y) { 20 limb_t d_y = y[i]; 21 LIMB_ADD0(c, r[i], d_y, c); i++; 23 } 24 return c; 26 }</pre>

Notes:

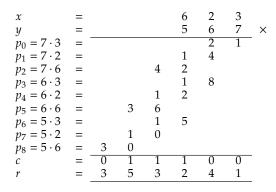
© Daniel Page **(csdsp@bristol**. Applied Cryptology

University of BRISTOL

git # c8178615 @ 2024-04-2

Part 2.1: in practice (7) Algorithms for $x \in \mathbb{N}$

- ► Step #2: N-focused operations, e.g., "long multiplication".
 - the idea is to support computation of



• the result *r* has at most $l_x + l_y$ limbs.

Part 2.1: in practice (7) Algorithms for $x \in \mathbb{N}$

▶ Step #2: N-focused operations, e.g., "long multiplication".

Algorithm (IN-MuL)	Listing
Input: Two unsigned, base- <i>b</i> integers <i>x</i> and <i>y</i> Output: An unsigned, base- <i>b</i> integer $r = x \cdot y$ 1 $l_x \leftarrow x , l_y \leftarrow y , l_r \leftarrow l_x + l_y$ 2 $r \leftarrow 0$ 3 for $j = 0$ upto $l_y - 1$ step +1 do 4 $\begin{vmatrix} c \leftarrow 0 \\ for i = 0 \text{ upto } l_x - 1 \text{ step +1 } do \\ 0 \\ r_{j+i} \leftarrow v \\ r_{j+i} \leftarrow v \\ 0 \\ end \\ 10 \\ r_{j+l_x} \leftarrow c \\ 11 end \\ 12 return r$	<pre>1 void mpn_mul(limb_t* r, const limb_t* x, int l_x, 2 const limb_t* y, int l_y) { 3 int l_r = l_x + l_y; 5 limb_t R[l_r], c; 7 memset(R, 0, l_r * SIZEOF(limb_t)); 9 for(int j = 0; j < l_y; j++) { 1 c = 0; 12 for(int i = 0; i < l_x; i++) { 14 limb_t d_y = y[j]; 15 limb_t d_R = R[j + i]; 16 limb_t d_R = R[j + i]; 17 limb_t d_R = R[j + i]; 18 LIMB_MUL2(c, R[j + i], d_y, d_x, d_R, c); 19 } 20 R[j + l_x] = c; 22 } 23 memcpy(r, R, l_r * SIZEOF(limb_t)); 25 }</pre>

Part 2.1: in practice (8) Algorithms for $x \in \mathbb{Z}$

► Step #3: ℤ-focused operations.

Algorithm (Z-ADD)	Listing
Input: Two signed, base- <i>b</i> integers <i>x</i> and <i>y</i> Output: A signed, base- <i>b</i> integers <i>x</i> and <i>y</i> 1 if $x < 0$ and $y \ge 0$ then 2 if $abs(x) \ge abs(y)$ then 3 $r \leftarrow -N-Sus(abs(x), abs(y))$ 4 else 5 $r \leftarrow +N-Sus(abs(y), abs(x))$ 6 end 7 end 8 else if $x \ge 0$ and $y < 0$ then 9 if $abs(x) \ge abs(y)$ then 10 $r \leftarrow +N-Sus(abs(x), abs(y))$ 11 else 12 $r \leftarrow -N-Sus(abs(x), abs(x))$ 13 end 14 end 15 else if $x \ge 0$ and $y \ge 0$ then 16 $r \leftarrow +N-Add(abs(x), abs(y))$ 17 end 18 else if $x < 0$ and $y < 0$ then 19 $r \leftarrow -N-Add(abs(x), abs(y))$ 21 return <i>r</i>	<pre>1 void mpz_add(mpz_t* r, const mpz_t* x, 2</pre>

© Daniel Page 〈csdsp@bristol.ac.uk〉 Applied Cryptology

University of BRISTOL

Part 2.1: in practice (9) Algorithms for $x \in \mathbb{Z}$

► Step #3: ℤ-focused operations.

Algorithm (Z-MuL)	Listing
Input: Two signed, base- <i>b</i> integers <i>x</i> and <i>y</i> Output: A signed, base- <i>b</i> integer $r = x \cdot y$ 1 if $x < 0$ and $y \ge 0$ then 2 $ r \leftarrow -\mathbb{N}-Mul(abs(x), abs(y))$ 3 end 4 else if $x \ge 0$ and $y < 0$ then 5 $ r \leftarrow -\mathbb{N}-Mul(abs(x), abs(y))$ 6 end 7 else if $x \ge 0$ and $y \ge 0$ then 8 $ r \leftarrow +\mathbb{N}-Mul(abs(x), abs(y))$ 9 end 10 else if $x < 0$ and $y < 0$ then 11 $ r \leftarrow +\mathbb{N}-Mul(abs(x), abs(y))$ 2 end 13 return <i>r</i>	<pre>1 void mpz_mul(mpz_t* r, const mpz_t* x, 2</pre>

Notes:

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology

BRISTOL

git # c8178615 @ 2024-04

Part 2.1: in practice (10) Algorithms for $x \in \mathbb{Z}$

► Step #3: ℤ-focused operations.

Listing
1 #define MPZ_MUL(r,x,y,s_r) { 2 int l_r = (x)->1 + (y)->1; 4 mpn_mul((r)->d, (x)->d, (x)->1, \ 5 (y)->d, (y)->1; \ 6 (r)->1 = mpn_lop((r)->d, l_r); \ 8 (r)->s = s_r; \ 9 }
Listing
<pre>1 int mpn_lop(const limb_t* x, int l_x) { 2 while((l_x > 1) && (x[l_x - 1] == 0)) { 3 l_x; 4 } 5 6 return l_x; 7 }</pre>

Part 2.2: in practice (1)

► Problem:

▶ given the **base** $x \in \mathbb{Z}_N^{\times}$ and the **exponent** $y \in \mathbb{Z}$, we want to compute $r = x^y \pmod{N}$,

we could do so via

 $r = x^y = x \times x \times \cdots \times x \pmod{N},$

y terms

but this is O(y) and the magnitude of y can be very large.

► Solution:

algorithms for efficient

 $\begin{array}{ccc} \text{multiplicative group } \mathbb{G}^{\times} & \sim & \text{exponentiation} & x^y \\ \text{additive group } \mathbb{G}^+ & \sim & \text{scalar multiplication} & [y] \, x \end{array}$

© Daniel Page (csdsp9bristol.ac.uk) Applied Cryptology BRISTOL

git # c8178615 @ 2024-04-24

Part 2.2: in practice (2)

- ► Idea: consider some G[×].
 - exponentiation *means* repeated application of the group operation, i.e.,

$$x^{y} = \underbrace{x \times x \times \cdots \times x}_{y \text{ terms}},$$

so if $y = 14_{(10)}$ we have

expressing y in base-2, we can rewrite this as

$$\begin{aligned} x^{y} &= x^{\sum_{i=0}^{n-1} y_{i} \cdot 2^{i}} \\ &= x^{y_{n-1} \cdot 2^{n-1} + \dots + y_{1} \cdot 2^{1} + y_{0} \cdot 2^{0}} \\ &= x^{y_{n-1} \cdot 2^{n-1}} \times \dots \times x^{y_{1} \cdot 2^{1}} \times x^{y_{0} \cdot 2^{0}} \end{aligned}$$

© Daniel Page (<u>"depublication"</u>) <mark>©</mark> // University of Applied Cryptology **©** // BRISTOL git # c8178615 @ 2024-04

Part 2.2: in practice (2)

- ► Idea: consider some G[×].
 - given $y = 14_{(10)} = 1110_{(2)}$ we can see that

$$\begin{array}{rclcrcrcrcrcrc} x^{y} & = & x^{y_0 \cdot 2^0} & \times & x^{y_1 \cdot 2^1} & \times & x^{y_2 \cdot 2^2} & \times & x^{y_3 \cdot 2^3} \\ & = & x^{0 \cdot 2^0} & \times & x^{1 \cdot 2^1} & \times & x^{1 \cdot 2^2} & \times & x^{1 \cdot 2^3} \\ & = & x^0 & \times & x^2 & \times & x^4 & \times & x^8 \\ & = & x^{14} & & & & \end{array}$$

• given $y = 14_{(10)} = 1110_{(2)}$ we can see that

$$\begin{array}{rclcrcrcrcrcrc} x^y & = & x^{y_0} & \times & (& x^{y_1} & \times & (& x^{y_2} & \times & (& x^{y_3} & \times & (& 1 &)^2 &)^2 &)^2 &)^2 \\ & x^0 & \times & (& x^1 & \times & (& x^1 & \times & (& x^1 & \times & (& 1 &)^2 &)^2 &)^2 &)^2 \\ & x^0 & \times & (& x^1 & \times & (& x^1 & \times & (& x^1 & \times & 1 & &)^2 &)^2 &)^2 &)^2 \\ & x^0 & \times & (& x^1 & \times & (& x^1 & \times & x^2 & & &)^2 &)^2 &)^2 &)^2 \\ & x^0 & \times & (& x^1 & \times & (& x^3 & & & & &)^2 &)^2 &)^2 & \\ & x^0 & \times & (& x^1 & \times & x^6 & & & & &)^2 &)^2 &)^2 & \\ & x^0 & \times & (& x^7 & & & & & &)^2 &)^2 & \\ & x^{14} & & & & & & & & & & & & \\ \end{array}$$

via application of Horner's rule.



Part 2.2: in practice (3)

- Option #1: left-to-right *binary* exponentiation.
 - evaluate the Horner expansion step-by-step in an "inside-out" order ,
 express *y* in base-2, i.e., extract a 1-bit digit *d* from *y* in each step,
 trade-off time in favour of space,

 - apply

$$r \leftarrow \begin{cases} r^2 & \text{if } d = 0\\ r^2 \times x & \text{if } d = 1 \end{cases}$$

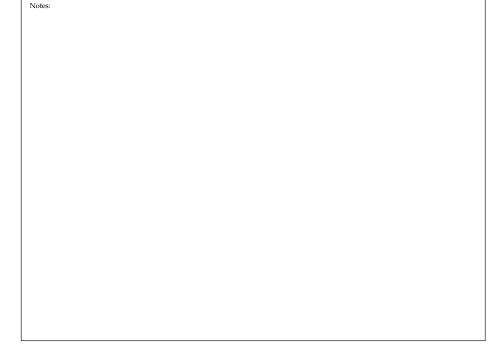
so as to *accumulate* the result.

BRISTOL

Part 2.2: in practice (3)

Option #1: left-to-right *binary* exponentiation.

Algorithm (1Exp-L2R-Binary)		
Input: A group element $x \in G^{\times}$, a base-2 integer $0 \le y < n$ Output: The group element $r = x^y \in G^{\times}$ 1 $r \leftarrow 1$ 2 for $i = y - 1$ downto 0 step -1 do 3 $ r \leftarrow r^2$ 4 if $y_i = 1$ then 5 $ r \leftarrow r \times x $ 6 end 7 end 8 return r		



Part 2.2: in practice (4)

- ► Option #2: left-to-right *windowed* exponentiation.

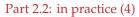
 - evaluate the Horner expansion step-by-step in an "inside-out" order ,
 express *y* in base-*m* for *m* = 2^k, i.e., extract a *k*-bit digit *d* from *y* in each step,
 trade-off space in favour of time, i.e., perform pre-computation reflected by *X*,

 - apply

$$r \leftarrow \begin{cases} r^{2^{k}} & \text{if } d = 0 \\ r^{2^{k}} & \times & (X[0] = x^{1}) & \text{if } d = 1 \\ r^{2^{k}} & \times & (X[1] = x^{2}) & \text{if } d = 2 \\ \vdots & & \\ r^{2^{k}} & \times & (X[2^{k} - 2] = x^{2^{k} - 1}) & \text{if } d = 2^{k} - 1 \end{cases}$$

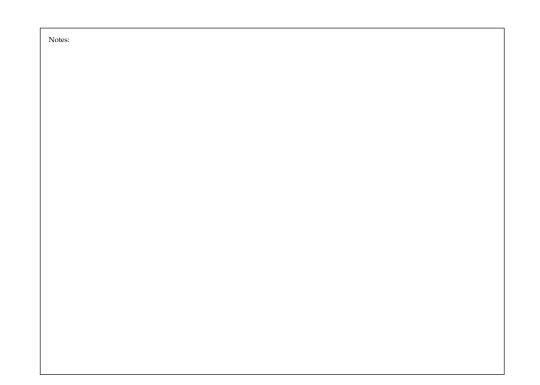
so as to *accumulate* the result.

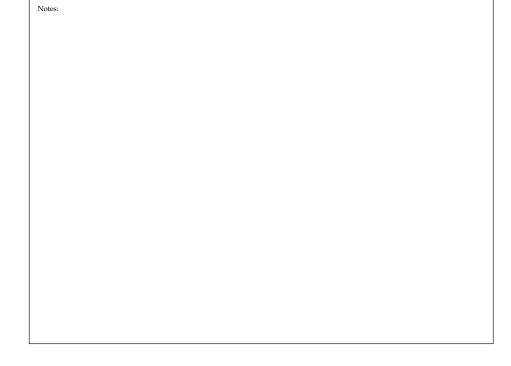
© Daniel Page (csdsp@bristol.ac.ub) Applied Cryptology	University of SBRISTOL	git # c8178615 @



► Option #2: left-to-right *windowed* exponentiation.

Algorithm (Recode-Base- <i>m</i>)	Algorithm (1Exp-L2R-FixedWindow)
Input: An integer <i>y</i> represented in base-2, an integer $m = 2^k$ Output: A sequence <i>y</i> ' which represents <i>y</i> in base-2 ^k 1 $y' \leftarrow 0, i \leftarrow 0$ 2 while $y \neq 0$ do 3 $ y'_i \leftarrow y \land (2^k - 1), y \leftarrow y \gg k, i \leftarrow i + 1$ 4 end 5 return <i>y</i> '	Input: A group element $x \in G^{\times}$, a base-2 integer $0 \le y < n$, an integer $m = 2^k$ Output: The group element $r = x^y \in G^{\times}$ 1 $y' \leftarrow \text{Recode-Base-}m(y, m = 2^k)$ 2 Pre-compute $X = [x^i \mid i \in \{1, 2, 3,, m - 1 = 2^k - 1\}]$ 3 $r \leftarrow 1$ 4 for $i = y' - 1$ downto 0 step -1 do 5 for $j = 0$ upto $k - 1$ step +1 do 6 $ r \leftarrow r^2$ 7 end 8 if $y'_i \ne 0$ then 9 $ r \leftarrow r \times X[y'_i - 1]$ 10 end 11 end 12 return r





Part 2.3: in practice (1)

► Problem:

• we want to represent and perform operations on integers modulo *N*, i.e., elements of

 $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\},\$

- we *could* implement \mathbb{Z}_N based on \mathbb{Z} , but any $x \in \mathbb{Z}_N$ will
 - always be positive, and
 - ▶ have a size that is upper-bounded by *N*.

► Solution:

- 1. a data structure to represent *x*, and
- 2. algorithms to operate on instances of said data structure.

© Daniel Page (tsdspibri stol . ac . uk) Applied Cryptology University of BRISTOL

8178615 @ 2024-04-24

Part 2.3: in practice (1)

► Problem:

▶ we want to represent and perform operations on integers modulo *N*, i.e., elements of

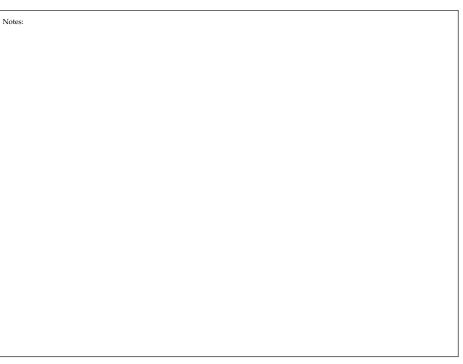
 $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\},\$

- we *could* implement \mathbb{Z}_N based on \mathbb{Z} , but any $x \in \mathbb{Z}_N$ will
 - always be positive, and
 - ▶ have a size that is upper-bounded by *N*.

► Solution:

- 1. use the existing data structure for \mathbb{N} , and
- 2. focus on an algorithm for $x \times y \pmod{N}$ to support \mathbb{Z}_N^{\times} .

Notes:



University of BRISTOL

git # c8178615 @ 2024-04-2-

► Idea:

1. Use the relationship

$$t \pmod{N} \equiv t - (N \times \left\lfloor \frac{t}{N} \right\rfloor)$$

which

- uses a standard integer representation,
- requires no pre-computation, but
- requires an integer division, which is relatively complicated and computationally expensive.

2. Use Barrett reduction [4], which

- uses a standard integer representation,
- requires some pre-computation, and
 requires 2 · (l_N + 1) · (l_N + 1) limb multiplications for an l_N-limb N.

3. Use **Montgomery reduction** [7], which

- uses a non-standard integer representation,
- requires some pre-computation, and
- requires $2 \cdot l_N \cdot l_N$ limb multiplications for an l_N -limb N.

© Daniel	Page (csdsp@bristol.ac.u
	Applied Cryptology

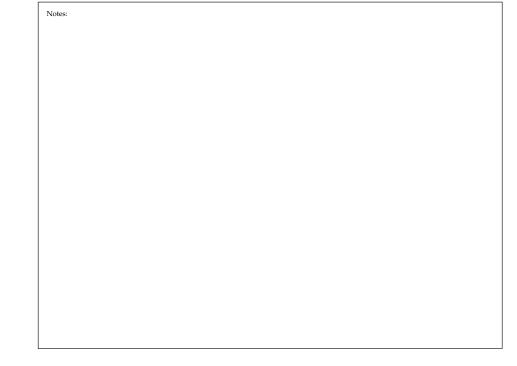
BRISTOL

Part 2.3: in practice (3)

• Montgomery-based multiplication \rightarrow exponentiation \rightarrow RSA:

- pre-compute a set of **Montgomery parameters** $\Pi = (N, \rho, \omega)$ where
 - 1. $\rho = b^k$ for the smallest *k* such that $b^k > N$, and
 - 2. $\omega = -N^{-1} \pmod{\rho}$,

assuming a base-*b* representation of *N* such that gcd(N, b) = 1,



Part 2.3: in practice (3)

- ► Montgomery-based multiplication ~> exponentiation ~> RSA:
 - the **Montgomery representation** of an integer

 $0 \le x < N$

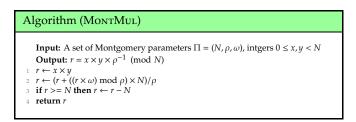
is then defined as

 $\hat{x} = x \times \rho \pmod{N},$

Part 2.3: in practice (3)

▶ Montgomery-based multiplication → exponentiation → RSA:

• using these concepts, we can define **Montgomery multiplication**:



where, crucially and by-design, the modular reduction and division by ρ are special-case.

	Notes:	
l		
[Notes:	

Part 2.3: in practice (3)

- Montgomery-based multiplication \rightarrow exponentiation \rightarrow RSA:
- given we can convert into

$$\begin{aligned} \operatorname{MontMul}((N, \rho, \omega), x, \rho^2 \mod N) &= x \times \rho^2 \times \rho^{-1} \pmod{N} \\ &= x \times \rho \pmod{N} \\ &= \hat{x} \end{aligned}$$

and from

MontMul($(N, \rho, \omega), \hat{x}, 1$) = $\hat{x} \times 1 \times \rho^{-1}$ (mod N) $= (x \times \rho) \times 1 \times \rho^{-1}$ (mod N)= *x*

Montgomery representation,

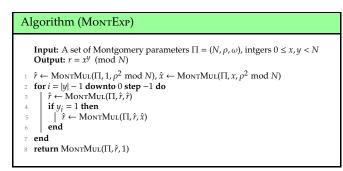
• we *could* then compute

$$r = x \times y \pmod{N} \iff \begin{cases} \hat{x} = \operatorname{MontMul}((N, \rho, \omega), x, \rho^2 \mod N) \\ \hat{y} = \operatorname{MontMul}((N, \rho, \omega), y, \rho^2 \mod N) \\ \hat{r} = \operatorname{MontMul}((N, \rho, \omega), \hat{x}, \hat{y}) \\ r = \operatorname{MontMul}((N, \rho, \omega), \hat{r}, 1) \end{cases}$$

but the overhead of conversion is too high ...

Part 2.3: in practice (3)

- Montgomery-based multiplication \rightarrow exponentiation \rightarrow RSA:
 - ... instead, we adapt an exponentiation algorithm: for example

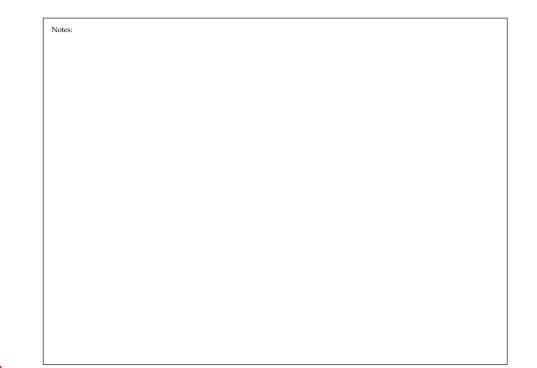


i.e.,

- convert input into Montgomery representation,
- compute a series of (many) Montgomery multiplications,
- convert output from Montgomery representation,

and thus amortise the conversion.

University of BRISTOL



Notes:		

Take away points: you can often simple use

 $c = \mathsf{RSA}.\mathsf{Enc}((N, e), m) = m^e \pmod{N},$

but understanding internals of this primitive can be useful and/or important.

- some historically interesting aspects; some "portable" concepts,
- close relationship between primitive and underlying Mathematics,
- wide range of viable implementation strategies,
- extensive deployment, in various contexts and use-cases.

© Daniel Page (sudspfbriatel.ac.ul) Chivenity of Applied Cryptology CN BRISTOL git # ct

Additional Reading

Wikipedia: RSA. url: https://en.wikipedia.org/wiki/RSA.

- V. Shoup. "Chapter 3: Computing with large integers". In: Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2008. URL: http://shoup.net/ntb/.
- A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. "Chapter 14: Efficient implementation". In: Handbook of Applied Cryptography. CRC, 1996. URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf.
- D.M. Gordon. "A Survey of Fast Exponentiation Methods". In: Journal of Algorithms 27 (1998), pp. 129–146.
- P.D. Barrett. "Implementing the Rivest, Shamir and Adleman public key encryption algorithm on a standard digital signal processor". In: Advances in Cryptology (CRYPTO). LNCS 263. Springer-Verlag, 1986, pp. 311–323.
- P.L. Montgomery. "Modular multiplication without trial division". In: Mathematics of Computation 44.170 (1985), pp. 519–521.
- Ç.K. Koç, T. Acar, and B.S. Kaliski. "Analyzing and comparing Montgomery multiplication algorithms". In: IEEE Micro 16.3 (1996), pp. 26–33.

Notes:

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology

University of BRISTOL

git # c8178615 @ 2024-0

615 @ 2024-04-24

- [1] Wikipedia: RSA. url: https://en.wikipedia.org/wiki/RSA (see p. 79).
- [2] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. "Chapter 14: Efficient implementation". In: Handbook of Applied Cryptography. CRC, 1996. URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf (see p. 79).
- [3] V. Shoup. "Chapter 3: Computing with large integers". In: Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2008. URL: http://shoup.net/ntb/ (see p. 79).
- [4] P.D. Barrett. "Implementing the Rivest, Shamir and Adleman public key encryption algorithm on a standard digital signal processor". In: Advances in Cryptology (CRYPTO). LNCS 263. Springer-Verlag, 1986, pp. 311–323 (see pp. 65, 79).
- [5] D.M. Gordon. "A Survey of Fast Exponentiation Methods". In: Journal of Algorithms 27 (1998), pp. 129–146 (see p. 79).
- [6] Ç.K. Koç, T. Acar, and B.S. Kaliski. "Analyzing and comparing Montgomery multiplication algorithms". In: IEEE Micro 16.3 (1996), pp. 26–33 (see p. 79).
- [7] P.L. Montgomery. "Modular multiplication without trial division". In: Mathematics of Computation 44.170 (1985), pp. 519–521 (see pp. 65, 79).
- [8] R.L. Rivest, A. Shamir, and L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". In: Communications of the ACM (CACM) 21.2 (1978), pp. 120–126 (see p. 5).

© Daniel Page ⟨csdsp@bristol.ac.ul⟩ Applied Cryptology	git # c8178615 @ 2024-04-24