
COMS30048 lecture: week #13

▶ Agenda: a non-technical introduction to
1. unit objectives,
2. unit organisation, and
3. some motivation (i.e., why the unit exists).
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Unit objectives, i.e., the “what” (1)

Theory:

▶ formal definition of functionality
and security models,

▶ precise and well-understood
assumptions,

▶ rigorous proofs of security, and
▶ open development and

standardisation processes.

Practice:

▶ application of theory to use-cases,
▶ secure, efficient implementation, and
▶ deployment and maintenance.

COMS30023
and

COMSM0042

COMS30048
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Unit objectives, i.e., the “what” (2)

▶ One can motivate the objectives by considering the field as a whole:
▶ keep in mind that

1. cryptology ≃ cryptography + cryptanalysis
2. cryptology ⊂ cybersecurity
3. cryptology ⊃ Mathematics
4. cryptology ⊃ encryption
5. “crypto” = cryptography

, block chain
▶ the field can be described as the sum of more specific sub-fields, namely
• underlying Mathematics ≃ number theory, group theory, ...
• cryptography ≃ design and analysis of (general) primitives and protocols
• applied cryptography ≃ development of (specific) cryptographic solutions
• cryptographic engineering ≃ implementing, deploying, and maintaining said solutions

Objectives

Pp

Put simply, after completing this unit you should be able to understand and apply concepts relating to

1. implementation techniques, e.g., multi-precision arithmetic
2. implementation attack and countermeasure techniques, e.g., timing attacks, constant-time implementation
3. cryptographic protocols and systems, e.g., TLS

set within the more general context of cryptology.

http://www.bris.ac.uk/unit-programme-catalogue/UnitDetails.jsa?unitCode=COMS30048
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Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
1. Everything is driven via the Blackboard-based unit web-site at

http://www.ole.bris.ac.uk

which links to all resources.
2. However, most Blackboard-agnostic resources can be accessed via

https://cs-uob.github.io/COMS30048

instead: this is based on the associated repo.

https://github.com/cs-uob/COMS30048
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Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
2. At a high(er) level, the unit is delivered as a set of themes (or parts)

Theme #1 ⇒ “implementation challenges”
Theme #2 ⇒ “security challenges (i.e., attacks and countermeasures)”
Theme #3 ⇒ “use-cases, examples, and case-studies”

by the following members of (academic) staff

Dr. Daniel Page ⇒ Lecturer and Unit Director
Dr. David Bernhard ⇒ Lecturer

plus a wider team who act in Teaching Support Roles (TSRs), e.g., as lab. demonstrators.
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Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
3. At a low(er) level, the unit involves the following activities

lecture slot ⇒ synchronous, i.e., timetabled
⇒ in-person

lab. slot ⇒ synchronous, i.e., timetabled
⇒ in-person

http://www.bristol.ac.uk/timetables/TimetablePDF.pdf?unit=COMS30048&tb=TB-2
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Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
4. The assessment for this unit includes

summative coursework assignment { TB2, week 24
7→ 100% weight = 20CP

noting that
COMS30048 7→ teaching unit
COMS30049 7→ assessment unit : level H/6
COMSM0054 7→ assessment unit : level M/7
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Unit motivation, i.e., the “why” (1)
Implementation challenges

r ← gx =⇒
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Unit motivation, i.e., the “why” (1)
Implementation challenges
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high-assurance
high-throughput

low-latency
low-footprint

power-efficient
physically secure

easy to use
...
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Unit motivation, i.e., the “why” (1)
Implementation challenges

r ↔ gx ?
⇐⇒
∈

Z
↑

N

∈
G

?

=

high-assurance
high-throughput

low-latency
low-footprint

power-efficient
physically secure

easy to use
...

TLS, IPsec, ...
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Unit motivation, i.e., the “why” (2)
Security challenges

i.e.,

1. “black box” security model { cryptanalytic attack ≃ focused on the design
≃ attackers do what they should

2. “grey box” security model { implementation attack ≃ focused on the implementation
≃ attackers do what they can

http://xkcd.com/538

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://xkcd.com/538
mailto:csdsp@bristol.ac.uk


Unit motivation, i.e., the “why” (2)
Security challenges

i.e.,

1. “black box” security model { cryptanalytic attack ≃ focused on the design
≃ attackers do what they should

2. “grey box” security model { implementation attack ≃ focused on the implementation
≃ attackers do what they can

http://xkcd.com/538

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

http://xkcd.com/538
mailto:csdsp@bristol.ac.uk


Unit motivation, i.e., the “why” (3)
Security challenges

error
messages

thermal
profile

execution
time

electro-magnetic
radiation

acoustic
profile

power
consumption

https://commons.wikimedia.org/wiki/File:Credit_or_Debit_Card_Flat_Icon_Vector.svg

© Daniel Page ⟨csdsp@bristol.ac.uk⟩

Applied Cryptology git # c8178615 @ 2024-04-24

https://commons.wikimedia.org/wiki/File:Credit_or_Debit_Card_Flat_Icon_Vector.svg
mailto:csdsp@bristol.ac.uk


Unit motivation, i.e., the “why” (3)
Security challenges

power
supply

input
data

clock
signal

logical
environment

(e.g., network)

electro-magnetic
radiation

physical
environment

(e.g., temperature)

https://commons.wikimedia.org/wiki/File:Credit_or_Debit_Card_Flat_Icon_Vector.svg
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Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

Pp

B How to Find Large Prime Numbers

Each user must (privately) choose two large random numbers p and q to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p · q. (Remember that n, but not
p or q, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and q, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem [7], about
(ln 10100)/2 = 115 numbers will be tested before a prime is found.

To test a large number b for primality we recommend the elegant “probabilistic”
algorithm due to Solovay and Strassen [12]. It picks a random number a from a
uniform distribution on {1, . . . , b− 1}, and tests whether

gcd(a, b) = 1 and J(a, b) = a(b−1)/2 (mod b), (6)

where J(a, b) is the Jacobi symbol [7]. If b is prime (6) is always true. If b is com-
posite (6) will be false with probability at least 1/2. If (6) holds for 100 randomly
chosen values of a then b is almost certainly prime; there is a (negligible) chance of
one in 2100 that b is composite. Even if a composite were accidentally used in our
system, the receiver would probably detect this by noticing that decryption didn’t
work correctly. When b is odd, a ≤ b, and gcd(a, b) = 1, the Jacobi symbol J(a, b)
has a value in {−1, 1} and can be efficiently computed by the program:

J(a, b) = if a = 1 then 1 else

if a is even then J(a/2, b) · (−1)(b2−1)/8

else J(b (mod a), a) · (−1)(a−1)·(b−1)/4

(The computations of J(a, b) and gcd(a, b) can be nicely combined, too.) Note that
this algorithm does not test a number for primality by trying to factor it. Other
efficient procedures for testing a large number for primality are given in [6,9,11].

To gain additional protection against sophisticated factoring algorithms, p and q
should differ in length by a few digits, both (p− 1) and (q − 1) should contain large
prime factors, and gcd(p − 1, q − 1) should be small. The latter condition is easily
checked.

To find a prime number p such that (p − 1) has a large prime factor, generate a
large random prime number u, then let p be the first prime in the sequence i · u+ 1,
for i = 2, 4, 6, . . . . (This shouldn’t take too long.) Additional security is provided by
ensuring that (u− 1) also has a large prime factor.

A high-speed computer can determine in several seconds whether a 100-digit num-
ber is prime, and can find the first prime after a given point in a minute or two.

Another approach to finding large prime numbers is to take a number of known
factorization, add one to it, and test the result for primality. If a prime p is found

9

▶ Challenges:
1. how can we generate random (enough) numbers,
2. how and where should we store key material once it’s generated, and
3. is a 200-digit (or n-digit) key enough to prevent real attacks (even in m years time),
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf
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Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

Pp

The whole message is enciphered as:

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655 .

The reader can check that deciphering works: 948157 ≡ 920 (mod 2773), etc.

IX Security of the Method: Cryptanalytic Ap-

proaches

Since no techniques exist to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break it. The NBS standard
was “certified” this way; seventeen man-years at IBM were spent fruitlessly trying to
break that scheme. Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure. (Actually there is some controversy
concerning the security of the NBS method [2].)

We show in the next sections that all the obvious approaches for breaking our
system are at least as difficult as factoring n. While factoring large numbers is not
provably difficult, it is a well-known problem that has been worked on for the last three
hundred years by many famous mathematicians. Fermat (1601?-1665) and Legendre
(1752-1833) developed factoring algorithms; some of today’s more efficient algorithms
are based on the work of Legendre. As we shall see in the next section, however, no
one has yet found an algorithm which can factor a 200-digit number in a reasonable
amount of time. We conclude that our system has already been partially “certified”
by these previous efforts to find efficient factoring algorithms.

In the following sections we consider ways a cryptanalyst might try to determine
the secret decryption key from the publicly revealed encryption key. We do not
consider ways of protecting the decryption key from theft; the usual physical security
methods should suffice. (For example, the encryption device could be a separate
device which could also be used to generate the encryption and decryption keys, such
that the decryption key is never printed out (even for its owner) but only used to
decrypt messages. The device could erase the decryption key if it was tampered with.)

A Factoring n

Factoring n would enable an enemy cryptanalyst to “break” our method. The factors
of n enable him to compute φ(n) and thus d. Fortunately, factoring a number seems
to be much more difficult than determining whether it is prime or composite.

A large number of factoring algorithms exist. Knuth [3, Section 4.5.4] gives an
excellent presentation of many of them. Pollard [9] presents an algorithm which
factors a number n in time O(n1/4).

The fastest factoring algorithm known to the authors is due to Richard Schroeppel
(unpublished); it can factor n in approximately

exp
√
ln(n) · ln(ln(n)) = n

√
ln ln(n)/ ln(n)

11

▶ Challenges:
1. what attacks exist beyond those a cryptanalyst might employ,
2. how can we generate and/or agree secure session keys between parties, and
3. what determines secure versus insecure erasure of data,
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf
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Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

Pp

From (3) we see that for all M such that p does not divide M

Mp−1 ≡ 1 (mod p)

and since (p− 1) divides φ(n)

Mk·φ(n)+1 ≡M (mod p).

This is trivially true when M ≡ 0 (mod p), so that this equality actually holds for
all M . Arguing similarly for q yields

Mk·φ(n)+1 ≡M (mod q) .

Together these last two equations imply that for all M ,

M e·d ≡Mk·φ(n)+1 ≡M (mod n).

This implies (1) and (2) for all M, 0 ≤ M < n. Therefore E and D are inverse
permutations. (We thank Rich Schroeppel for suggesting the above improved version
of the authors’ previous proof.)

VII Algorithms

To show that our method is practical, we describe an efficient algorithm for each
required operation.

A How to Encrypt and Decrypt Efficiently

Computing M e (mod n) requires at most 2 · log2(e) multiplications and 2 · log2(e)
divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let ekek−1...e1e0 be the binary representation of e.
Step 2. Set the variable C to 1.
Step 3. Repeat steps 3a and 3b for i = k, k − 1, . . . , 0:

Step 3a. Set C to the remainder of C2 when divided by n.
Step 3b. If ei = 1, then set C to the remainder of C ·M when divided by n.

Step 4. Halt. Now C is the encrypted form of M .

This procedure is called “exponentiation by repeated squaring and multiplication.”
This procedure is half as good as the best; more efficient procedures are known.
Knuth [3] studies this problem in detail.

The fact that the enciphering and deciphering are identical leads to a simple
implementation. (The whole operation can be implemented on a few special-purpose
integrated circuit chips.)

A high-speed computer can encrypt a 200-digit message M in a few seconds;
special-purpose hardware would be much faster. The encryption time per block in-
creases no faster than the cube of the number of digits in n.

8

▶ Challenges:
1. how efficient and suitable is an implementation of this approach (versus alternatives) on a

given platform,
2. how can we be sure an implementation doesn’t leak information and isn’t vulnerable to

tampering, and
3. how should we use the resulting public-key encryption primitive within some application,
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf
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Conclusions (2)

Quote

Pp

In theory, there is no difference between theory and practice. But, in practice, there is.

– van de Snepscheut (http://en.wikiquote.org/wiki/Jan_L._A._van_de_Snepscheut)

▶ Take away points:
1. Practical realisation of theoretical cryptography is hard, but someone has to do it: since you are

potentially them, you’ll ideally do a good job!
2. Development and deployment of wider systems that utilise cryptography requires a deep,

inter-disciplinary understanding of both dimensions ...
3. ... even then, various domain-specific challenges must be met somehow to avoid (epic) failure:
▶ in many cases, failure to meet similar challenges is obvious, e.g., something just doesn’t work,
▶ in cryptography, the worst-case is that don’t even know you don’t understand until it’s too late.
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Additional Reading

▶ Wikipedia: Cryptography. url: https://en.wikipedia.org/wiki/Cryptography.

▶ Wikipedia: Cryptographic engineering. url: https://en.wikipedia.org/wiki/Cryptographic_engineering.
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