
Applied Cryptology

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

April 24, 2024

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and

2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:



COMS30048 lecture: week #13

▶ Agenda: a non-technical introduction to
1. unit objectives,
2. unit organisation, and
3. some motivation (i.e., why the unit exists).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit objectives, i.e., the “what” (1)

Theory:

▶ formal definition of functionality
and security models,

▶ precise and well-understood
assumptions,

▶ rigorous proofs of security, and
▶ open development and

standardisation processes.

Practice:

▶ application of theory to use-cases,
▶ secure, efficient implementation, and
▶ deployment and maintenance.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit objectives, i.e., the “what” (1)

Theory:

▶ formal definition of functionality
and security models,

▶ precise and well-understood
assumptions,

▶ rigorous proofs of security, and
▶ open development and

standardisation processes.

Practice:

▶ application of theory to use-cases,
▶ secure, efficient implementation, and
▶ deployment and maintenance.

COMS30023
and

COMSM0042

COMS30048

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit objectives, i.e., the “what” (2)

▶ One can motivate the objectives by considering the field as a whole:
▶ keep in mind that

1. cryptology ≃ cryptography + cryptanalysis
2. cryptology ⊂ cybersecurity
3. cryptology ⊃ Mathematics
4. cryptology ⊃ encryption
5. “crypto” = cryptography

, block chain
▶ the field can be described as the sum of more specific sub-fields, namely
• underlying Mathematics ≃ number theory, group theory, ...
• cryptography ≃ design and analysis of (general) primitives and protocols
• applied cryptography ≃ development of (specific) cryptographic solutions
• cryptographic engineering ≃ implementing, deploying, and maintaining said solutions

http://www.bris.ac.uk/unit-programme-catalogue/UnitDetails.jsa?unitCode=COMS30048

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit objectives, i.e., the “what” (2)

Objectives

Put simply, after completing this unit you should be able to understand and apply concepts relating to

1. implementation techniques, e.g., multi-precision arithmetic
2. implementation attack and countermeasure techniques, e.g., timing attacks, constant-time implementation
3. cryptographic protocols and systems, e.g., TLS

set within the more general context of cryptology.

http://www.bris.ac.uk/unit-programme-catalogue/UnitDetails.jsa?unitCode=COMS30048

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
1. Everything is driven via the Blackboard-based unit web-site at

http://www.ole.bris.ac.uk

which links to all resources.
2. However, most Blackboard-agnostic resources can be accessed via

https://cs-uob.github.io/COMS30048

instead: this is based on the associated repo.

https://github.com/cs-uob/COMS30048

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
2. At a high(er) level, the unit is delivered as a set of themes (or parts)

Theme #1 ⇒ “implementation challenges”
Theme #2 ⇒ “security challenges (i.e., attacks and countermeasures)”
Theme #3 ⇒ “use-cases, examples, and case-studies”

by the following members of (academic) staff

Dr. Daniel Page ⇒ Lecturer and Unit Director
Dr. David Bernhard ⇒ Lecturer

plus a wider team who act in Teaching Support Roles (TSRs), e.g., as lab. demonstrators.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
3. At a low(er) level, the unit involves the following activities

lecture slot ⇒ synchronous, i.e., timetabled
⇒ in-person

lab. slot ⇒ synchronous, i.e., timetabled
⇒ in-person

http://www.bristol.ac.uk/timetables/TimetablePDF.pdf?unit=COMS30048&tb=TB-2

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit organisation, i.e., the “how” (1)

▶ Keep the following in mind:
4. The assessment for this unit includes

summative coursework assignment { TB2, week 24
7→ 100% weight = 20CP

noting that
COMS30048 7→ teaching unit
COMS30049 7→ assessment unit : level H/6
COMSM0054 7→ assessment unit : level M/7

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (1)
Implementation challenges

r ← gx =⇒

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (1)
Implementation challenges

r ← gx =⇒∈
Z
↑
N

∈
G

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (1)
Implementation challenges

r ← gx ?
=⇒∈
Z
↑
N

∈
G

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (1)
Implementation challenges

r ← gx ?⇐⇒∈
Z
↑
N

∈
G

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (1)
Implementation challenges

r ↔ gx ?⇐⇒∈
Z
↑
N

∈
G

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (1)
Implementation challenges

r ↔ gx ?⇐⇒∈
Z
↑
N

∈
G

?

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (1)
Implementation challenges

r ↔ gx ?⇐⇒∈
Z
↑
N

∈
G

?

=

high-assurance
high-throughput

low-latency
low-footprint

power-efficient
physically secure

easy to use
...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (1)
Implementation challenges

r ↔ gx ?⇐⇒∈
Z
↑
N

∈
G

?

=

high-assurance
high-throughput

low-latency
low-footprint

power-efficient
physically secure

easy to use
...

TLS, IPsec, ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (2)
Security challenges

http://xkcd.com/538

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (2)
Security challenges

i.e.,

1. “black box” security model { cryptanalytic attack ≃ focused on the design
≃ attackers do what they should

2. “grey box” security model { implementation attack ≃ focused on the implementation
≃ attackers do what they can

http://xkcd.com/538

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Unit motivation, i.e., the “why” (3)
Security challenges

error
messages

thermal
profile

execution
time

electro-magnetic
radiation

acoustic
profile

power
consumption

https://commons.wikimedia.org/wiki/File:Credit_or_Debit_Card_Flat_Icon_Vector.svg

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Unit motivation, i.e., the “why” (3)
Security challenges

power
supply

input
data

clock
signal

logical
environment

(e.g., network)

electro-magnetic
radiation

physical
environment

(e.g., temperature)

https://commons.wikimedia.org/wiki/File:Credit_or_Debit_Card_Flat_Icon_Vector.svg

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

Each user must (privately) choose two large random numbers p and q to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p · q. (Remember that n, but not
p or q, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and q, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem [7], about
(ln 10100)/2 = 115 numbers will be tested before a prime is found.

▶ Challenges:
1. how can we generate random (enough) numbers,
2. how and where should we store key material once it’s generated, and
3. is a 200-digit (or n-digit) key enough to prevent real attacks (even in m years time),
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

In the following sections we consider ways a cryptanalyst might try to determine
the secret decryption key from the publicly revealed encryption key. We do not
consider ways of protecting the decryption key from theft; the usual physical security
methods should suffice. (For example, the encryption device could be a separate
device which could also be used to generate the encryption and decryption keys, such
that the decryption key is never printed out (even for its owner) but only used to
decrypt messages. The device could erase the decryption key if it was tampered with.)

▶ Challenges:
1. what attacks exist beyond those a cryptanalyst might employ,
2. how can we generate and/or agree secure session keys between parties, and
3. what determines secure versus insecure erasure of data,
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

Conclusions (1)

RSA: Rivest, Shamir, and Adleman [3]

Computing M e (mod n) requires at most 2 · log2(e) multiplications and 2 · log2(e)
divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let ekek−1...e1e0 be the binary representation of e.
Step 2. Set the variable C to 1.
Step 3. Repeat steps 3a and 3b for i = k, k − 1, . . . , 0:

Step 3a. Set C to the remainder of C2 when divided by n.
Step 3b. If ei = 1, then set C to the remainder of C ·M when divided by n.

Step 4. Halt. Now C is the encrypted form of M .

▶ Challenges:
1. how efficient and suitable is an implementation of this approach (versus alternatives) on a

given platform,
2. how can we be sure an implementation doesn’t leak information and isn’t vulnerable to

tampering, and
3. how should we use the resulting public-key encryption primitive within some application,
4. ...

http://people.csail.mit.edu/rivest/Rsapaper.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



Conclusions (2)

Quote

In theory, there is no difference between theory and practice. But, in practice, there is.

– van de Snepscheut (http://en.wikiquote.org/wiki/Jan_L._A._van_de_Snepscheut)

▶ Take away points:
1. Practical realisation of theoretical cryptography is hard, but someone has to do it: since you are

potentially them, you’ll ideally do a good job!
2. Development and deployment of wider systems that utilise cryptography requires a deep,

inter-disciplinary understanding of both dimensions ...
3. ... even then, various domain-specific challenges must be met somehow to avoid (epic) failure:
▶ in many cases, failure to meet similar challenges is obvious, e.g., something just doesn’t work,
▶ in cryptography, the worst-case is that don’t even know you don’t understand until it’s too late.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:

• A summary of (some) points that lead to the cited difficulty might read as follows:
1. One cannot simply “assume the existence of X” in the sense that for every component X needed, we also need a way to realise it in practice.
2. The quality metrics for such a realisation are diverse, and often mutually exclusive (rather than graceful trade-offs); among tough decisions,

security should still be first-class.
3. Many primitives will represent an inherently expensive workload comprised of computationally-bound, highly numeric kernels; they often also

exist in high-volume or high-throughput applications.
4. The range of platforms one might need to realise a solution on is vast, and diverse; understanding and utilising the platform characteristics is vital.
5. A practical security model (or attack surface) can be much wider than a theoretical analogue, and the implication of any insecurity are more

tangible.
6. Someone actually has to use the realisation, so human-error needs to be minimised: anecdotal evidence shows it is common for users to disable

security features in an application if it improves performance or responsiveness.

Additional Reading

▶ Wikipedia: Cryptography. url: https://en.wikipedia.org/wiki/Cryptography.

▶ Wikipedia: Cryptographic engineering. url: https://en.wikipedia.org/wiki/Cryptographic_engineering.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:



References

[1] Wikipedia: Cryptographic engineering. url: https://en.wikipedia.org/wiki/Cryptographic_engineering (see p. 55).

[2] Wikipedia: Cryptography. url: https://en.wikipedia.org/wiki/Cryptography (see p. 55).

[3] R.L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”. In:
Communications of the ACM (CACM) 21.2 (1978), pp. 120–126 (see pp. 47, 49, 51).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Applied Cryptology git # c8178615 @ 2024-04-24

Notes:


