
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native appa available for Android and iOS, or

2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-based
unit portal.

• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are
managed by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a
workstation that fails to boot, an error when you try to use some software, or you just cannot log into your
account), they can help: you can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The worksheet is written assuming you work in the lab. using supported UoB-managed equipment. If you
need or prefer to use your own equipment, however, there are various unsupportedb alternatives available:
for example, you could a) manually install any software dependencies yourself, or b) use the unit-specific
Vagrantc box by following instructions at

http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md

• The purpose of the worksheet is to provide a) a tutorial-style introduction to selected technologies or
concepts, and/or b) a means to explore them via hands-on tasks and challenges. Note that the worksheet is
not assessed at all: if you are confident that you already understand the content, there is no problem with
nor penalty for totally ignoring it.

• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these
include both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit portal)
instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no guarantees

about nor support for their use will be offered.
chttp://www.vagrantup.com

git # 4c6e4beb @ 2024-03-11 1

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
http://www.vagrantup.com

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS30048 lab. worksheet #5

Before you start work, download (and, if need be, unarchivea) the file

http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-5.tar.gz

somewhere secureb in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows.

aFor example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-5.tar.gz in a terminal window, 2) use ark directly: use
the Activities desktop menu item, search for and execute ark, use the Archive→Open menu item to open lab-5.tar.gz, then extract the
contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin, right-click
on lab-5.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

1. Introduction

This lab. worksheet offers a suite of software-based implementation attack challenges, modelled around the
more general concept of a Capture the Flag (CTF)1 exercise; as with the hardware platform introduced by lab.
worksheets #1.1 and #1.2, they constitute part of our ongoing (open source) SCALE2 project. Each challenge is
focused on a specific scenario, and designed to allow you to enrich your understanding of the this general field,
while, e.g., applying practical skills associated with it. In terms of the concepts involved, you could think of them
as similar to but more advanced than lab. worksheet #4.

2. Guidance

• The challenges are described in an overly generic way, using ${USER} as an identifier that could allow their
personalisation on a per user basis. However, the lab. worksheet does not do so: there is a single, generic set
of material denoted ${ARCHIVE} as normal, meaning you should assume

${USER} = lab-5.

• The behaviour of a given attack target is simulated using an executable program. Each such executable was
produced (i.e., is the result of compilation) on a platform equivalent to those in the MVB Linux lab(s). (e.g.,
MVB-1.15 or MVB-2.11). As such, it is only guaranteed to work on either the same or at least a compatible3

platform, and, even then, only once the file has appropriate permissions set using chmod.

• Interaction with each simulated target requires understanding the representation and conversion of both
integers and octet strings (which are essentially human-readable sequences of 8-bit bytes). Appendix A
includes a detailed discussion of this issue.

• There are a many challenges, and each one alone could represent a significant amount of effort (both in terms
of researching and developing an attack strategy, and then implementation an attack based on it). As such,
if you use the lab. worksheet at all then a reasonable remit would be to focus on one challenge only: at least
in the first instance, pick one for which the scenario presented is the most compelling, has the most value
(e.g., with respect to the coursework assignment), or is the most familiar (suggesting, e.g., it is the most
achievable).

3. Content

3.1. Challenge #1: an attack based on error messages

3.1.1. Background

Imagine you encounter a server, denoted T , which acts as a storage repository for sensor data. An installation
of 50 or so IoT-class sensor nodes regularly transmit encrypted packets of data to T , which stores them for later

1https://en.wikipedia.org/wiki/Capture_the_flag_(cybersecurity)
2http://www.github.com/danpage/scale
3For instance, one way to reduce your dependency on workstations in the CS Linux lab. is to use a compatible operating system in a VM

or as a LiveCD on your own workstation. Alternatives include virtualisation and translation layers, such as Noah (http://www.github.com/
linux-noah/noah) for MacOS or WSL (http://docs.microsoft.com/en-us/windows/wsl) for Windows, that allow Linux binaries to execute
on other operating systems.

git # 4c6e4beb @ 2024-03-11 2

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-5.tar.gz
https://en.wikipedia.org/wiki/Capture_the_flag_(cybersecurity)
http://www.github.com/danpage/scale
http://www.github.com/linux-noah/noah
http://www.github.com/linux-noah/noah
http://docs.microsoft.com/en-us/windows/wsl

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

analysis (iff. they are deemed to be valid). Having already captured some encrypted packets transmitted by a
target sensor node, you are tasked with recovery of the underlying sensor data. An attacker E interacts with T ,
which stores the embedded, security-critical data (some key material), as follows:

E T

k̂ = (k̂1 , k̂2)

(l, c, iv)

Λ |= result code ∈ {0, 1, 2}

r = Process(k, l, c, iv)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
ciphertext) to T , then 2) T performs the computation detailed (i.e., it processes the ciphertext, as detailed further
below); note that no output is produced by T , implying, e.g., that it uses the provided input internally. In more
detail, the algorithm Processwhich captures the computation performed by T can be described by the following
steps:

1. decrypt the l-block c, i.e., compute

m ∥ τ ∥ ρ = AES-128-CBC.Dec(k̂1, iv, c)

then

2. check whether ρ is valid, aborting immediately and produce result code 1 if not, then

3. check whether τ is valid, i.e., whether

HMAC-SHA-1.Ver(k̂2,m, τ) = true,

aborting immediately and produce result code 2 if not, then

4. process m somehow, and produce result code 0.

Since there is no (external) output from T (e.g., relating to r), one might question how E obtains the (internal)
result code. Doing so is plausible, because E can use execution latency as a proxy: since computation by T
early-aborts depending on the error condition, observation of the execution latency is (modulo any experimental
noise) suggestive of whether, when, and what error has occured.

3.1.2. Material

${ARCHIVE}/aes_padding/${USER}.T This executable simulates interaction with the attack target T . When
executed it will read the following input

• l, a length (represented as a decimal integer string),

• c, an l-block AES-128-CBC ciphertext (represented as a length-prefixed, hexadecimal octet string), and

• iv, a 1-block AES-128-CBC initialisation vector (represented as a length-prefixed, hexadecimal octet string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, a result code (represented as a decimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• To avoid attacks that leverage execution latency, T employs a high-performance yet constant-time AES-128
implementation (operated in CBC mode) that is derived from [8]; this implies 128-bit block and cipher key
lengths.

• Keep in mind some limitations, namely 0 ≤ l < 256, on maximum plaintext and/or ciphertext length.

• The PKCS#7 v1.5 [7, Section 10.3] padding scheme is used: given a block size of 16 bytes, define p = 16−(|m ∥

τ| mod 16) which implies that 1 ≤ p ≤ 16. The padding can then be described as

ρ = ⟨p, p, . . . , p︸ ︷︷ ︸
p octets

⟩,

i.e., a sequence of p octets each of whose value is p.

git # 4c6e4beb @ 2024-03-11 3

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

${ARCHIVE}/aes_padding/${USER}.conf This file represents a set of attack parameters, including everything
(e.g., all public values) that E has access to by default. More specifically, it contains

• ĉ, a 1-block AES-128-CBC ciphertext (represented as a length-prefixed, hexadecimal octet string), corre-
sponding to an encryption of some unknown plaintext m̂ (using îv), and

• îv, a 1-block AES-128-CBC initialisation vector (represented as a length-prefixed, hexadecimal octet string),

using one field per line. More specifically, this represents the previously captured network traffic whose decryption,
i.e., recovery of the underlying plaintext m̂, is the task at hand. Keep in mind that m̂ will include the SHA-1 hash
of ${USER} as the least-significant octets: this allows candidate decryptions to be checked for validity.

3.1.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material m̂. When executed using a command of the form

./attack ${USER}.T ${USER}.conf

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/aes_padding/${USER}.exam.

3.2. Challenge #2: an attack based on error messages

3.2.1. Background

PKCS#1 v2.1 [6] specifies the RSAES-OAEP decryption [6, Section 7.1] scheme, which, in turn, makes use of
Optimal Asymmetric Encryption Padding (OAEP) [2]. Crucially, the decryption process can encounter various
error conditions:

Error #1: A decryption error occurs in Step 3.g of RSAES-OAEP-Decrypt if the octet string passed to the decoding
phase does not have a most-significant 00(16) octet. Put another way, the error occurs because the output
produced by RSA decryption is too large to fit into one fewer octets than the modulus.

Error #2: A decryption error occurs in Step 3.g of RSAES-OAEP-Decrypt if the octet string passed into the decoding
phase does not a) produce a hashed label that matches, or b) use a 01(16) octet between any padding and the
message. Put another way, the error occurs because the plaintext validity checking mechanism fails.

A footnote [6, Section 7.1.2] explains why all errors, these two in particular, should be indistinguishable from each
other; a given application should not reveal which error occurred, even if it reveals some error occurred.

Imagine you form part of a red team4 asked to assess a specific e-commerce server, denoted T , which houses
a 64-bit Intel Core2 micro-processor. In reality, the server is a HSM-like device representing the back-office
infrastructure that supports various secure web-sites: the server offers secure key generation and storage, plus
off-load for some cryptographic operations. T is able to compute RSAES-OAEP decryption, but, crucially, does
not adhere to the advice re. error indistinguishability outlined above. An attacker E interacts with T , which stores
the embedded, security-critical data (a private key), as follows:

E T

(N̂, d̂)

(l, c)

Λ |= result code ∈ {0, 1, . . .}

r = Process((N̂, d̂), l, c)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
ciphertext) to T , then 2) T performs the computation detailed (i.e., it processes the ciphertext, as detailed further
below); note that no output is produced by T , implying, e.g., that it uses the provided input internally. During
such an interaction, E is also able to observe (i.e., measure) the computation performed byT , so attempts to exploit
this fact. In more detail, the algorithm Processwhich captures the computation performed by T can be described
by the following steps:

4https://en.wikipedia.org/wiki/Red_team

git # 4c6e4beb @ 2024-03-11 4

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
https://en.wikipedia.org/wiki/Red_team

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

1. decrypt c, i.e., compute
m = RSAES-OAEP.Decrypt((N̂, d̂), c),

and, in doing so, deal with various error conditions:

• if error #1 occurred during decryption, abort immediately and produce result code 1,

• if error #2 occurred during decryption, abort immediately and produce result code 2,

• if there was some other internal error (e.g., due to malformed input), abort immediately and produce a
result code that attempts to diagnose the cause:

– if the result code is 3 then RSAEP failed because the operand was out of range (section 5.1.1, step
1, page 11), i.e., the plaintext is not between 0 and N̂ − 1,

– if the result code is 4 then RSADP failed because the operand was out of range (section 5.1.2, step
1, page 11), i.e., the ciphertext is not between 0 and N̂ − 1,

– if the result code is 5 then RSAES-OAEP-Encrypt failed because a length check failed (section 7.1.1,
step 1.b, page 18), i.e., the message is too long,

– if the result code is 6 then RSAES-OAEP-Decrypt failed because a length check failed (section 7.1.2,
step 1.b, page 20), i.e., the ciphertext does not match the length of N̂,

– if the result code is 7 then RSAES-OAEP-Decrypt failed because a length check failed (section 7.1.2,
step 1.c, page 20), i.e., the ciphertext does not match the length of the hash function output.

– any other result code (of 8 upward) implies an abnormal error whose cause cannot be directly
associated with any of the above.

2. process m somehow, and produce result code 0.

Since there is no (external) output from T (e.g., relating to r), one might question how E obtains the (internal)
result code. Doing so is plausible, because E can use execution latency as a proxy: since computation by T
early-aborts depending on the error condition, observation of the execution latency is (modulo any experimental
noise) suggestive of whether, when, and what error has occured.

3.2.2. Material

${ARCHIVE}/rsa_padding/${USER}.T This executable simulates interaction with the attack target T . When
executed it will read the following input

• l, an RSAES-OAEP label (represented as a length-prefixed, hexadecimal octet string), and

• c, an RSAES-OAEP ciphertext (represented as a length-prefixed, hexadecimal octet string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, a result code (represented as a decimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error.

${ARCHIVE}/rsa_padding/${USER}.conf This file represents a set of attack parameters, including everything
(e.g., all public values) that E has access to by default. More specifically, it contains

• N̂, an RSA modulus (represented as a hexadecimal integer string),

• ê, an RSA public exponent (represented as a hexadecimal integer string), such that ê · d̂ ≡ 1 (mod Φ(N̂)),

• l̂, an RSAES-OAEP label (represented as a length-prefixed, hexadecimal octet string), and

• ĉ, an RSAES-OAEP ciphertext (represented as a length-prefixed, hexadecimal octet string), corresponding to
an encryption of some unknown plaintext m̂ (using l̂),

using one field per line. Note that (N̂, ê) is a (known) RSA public key associated with (N̂, d̂), i.e., the (unknown)
RSA private key, and that ĉ is a ciphertext whose decryption, i.e., recovery of the underlying plaintext m̂, is the
task at hand. You can assume the RSAES-OAEP encryption of m̂ that produced ĉ used the MGF1 mask generation
function with SHA-1 as the underlying hash function. Additionally, m̂ will include the SHA-1 hash of ${USER} as
the least-significant octets: this allows candidate decryptions to be checked for validity.

git # 4c6e4beb @ 2024-03-11 5

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.2.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material m̂. When executed using a command of the form

./attack ${USER}.T ${USER}.conf

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/rsa_padding/${USER}.exam.

3.3. Challenge #3: an attack based on execution time

3.3.1. Background

Imagine you are tasked with attacking a device, denoted T , which houses an 8-bit Intel 8051 micro-processor.
More specifically, T represents an ISO/IEC 7816 compliant contact-based smart-card used within larger devices as
a cryptographic co-processor module: using a standardised protocol (or API), it supports secure key generation
and storage plus off-load of some cryptographic operations. An attacker E interacts with T , which stores the
embedded, security-critical data (a cipher key), as follows:

E T

k̂

m

c

Λ |= execution latency

c = AES-128.Enc(k̂,m)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
plaintext) toT , 2)T performs the computation detailed (i.e., it encrypts the plaintext using the cipher key), then 3)
T provides some output (a ciphertext) to E. During such an interaction, E is also able to observe (i.e., measure) the
computation performed by T , so attempts to exploit this fact. Note that the ability to observe execution latency
is plausible, because E can simply record how long T takes to respond with the output associated with a given
input (noting the potential for experimental noise while doing so).

3.3.2. Material

${ARCHIVE}/aes_timing/${USER}.T This executable simulates interaction with the attack target T . When
executed it will read the following input

• m, a 1-block AES-128 plaintext (represented as a length-prefixed, hexadecimal octet string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, an execution latency measured in clock cycles (represented as a decimal integer string), and

• c, a 1-block AES-128 ciphertext (represented as a length-prefixed, hexadecimal octet string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• T uses an AES-128 implementation, which implies 128-bit block and cipher key lengths; following the
notation in [1, Figure 5], note that Nb = 4 and Nr = 10 means a (4 × 4)-element state matrix is used in a total
of 11 rounds.

• More concretely, it is an 8-bit, memory-constrained implementation with the S-box held as a 256 B look-up
table in memory. In line with the goal of minimising the memory footprint, the round keys are not pre-
computed: each encryption takes the cipher key and evolves it forward, step-by-step, to form successive
round keys for use during key addition.

Crucially, the implementation realises xtime (i.e., multiplication-by-x, as used in the MixColumns round
function) by computing it via

git # 4c6e4beb @ 2024-03-11 6

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

uint8_t xtime(uint8_t x) {
if(x & 0x80) {
return 0x1B ^ (x << 1);

}
else {
return (x << 1);

}
}

rather than, e.g., pre-computed and then realised via accesses into a look-up table.

${ARCHIVE}/aes_timing/${USER}.R In many side-channel and fault attacks, the attacker is able to perform an
initial profiling or calibration phase: a common rationale for doing so is to support selection or fine-tuning of
parameters for a subsequent attack. With this in mind, a simulated replica R of the attack target is also provided.
R is identical to T , bar the fact it reads the following input (one field per line)

• m̄, a 1-block AES-128 plaintext (represented as a length-prefixed, hexadecimal octet string), and

• k̄, an AES-128 cipher key (represented as a length-prefixed, hexadecimal octet string),

from stdin. In contrast to T , this means R will use the chosen cipher key k̄ to encrypt the chosen plaintext m̄.

3.3.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material k̂. When executed using a command of the form

./attack ${USER}.T

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/aes_timing/${USER}.exam.

3.4. Challenge #4: an attack based on execution time

3.4.1. Background

Imagine you are tasked with attacking a server, denoted T , which houses a 64-bit Intel Core2 micro-processor. T
is used by several front-line e-commerce servers, which offload computation relating to TLS handshakes. More
specifically, T is used to compute the RSA decryption required by RSA-based key exchange. An attacker E
interacts with T , which stores the embedded, security-critical data (a private key), as follows:

E T

(N̂, d̂)

c

m

Λ |= execution latency

m = RSA.Dec((N̂, d̂), c) = cd̂ (mod N̂)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
ciphertext) to T , 2) T performs the computation detailed (i.e., it decrypts the ciphertext using the private key),
then 3)T provides some output (a plaintext) toE. During such an interaction,E is also able to observe (i.e., measure)
the computation performed byT , so attempts to exploit this fact. Note that the ability to observe execution latency
is plausible, because E can simply record how long T takes to respond with the output associated with a given
input (noting the potential for experimental noise while doing so).

git # 4c6e4beb @ 2024-03-11 7

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.4.2. Material

${ARCHIVE}/rsa_timing/${USER}.T This executable simulates interaction with the attack target T . When
executed it will read the following input

• c, an RSA ciphertext (represented as a hexadecimal integer string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, an execution latency measured in clock cycles (represented as a decimal integer string), and

• m, an RSA plaintext (represented as a hexadecimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• Because T houses a 64-bit micro-processor, it employs a base-264 representation of multi-precision integers
throughout. Put another way, since w = 64, it selects b = 2w = 264.

• Rather than a CRT-based approach, T uses a left-to-right binary exponentiation [5, Section 2.1] algorithm
to compute m = cd̂ (mod N̂).Montgomery multiplication [10] is harnessed to improve efficiency; following
notation in [9], a CIOS-based [9, Section 5] approach is used to integrate5 an integer multiplication with a
subsequent Montgomery reduction.

• Following the notation in [5], d̂ is assumed to have l + 1 bits such that d̂l = 1 for some l. However, it has
been (artificially) selected so 0 ≤ d̂ < 264 to limit the duration of an attack: you should not rely on this fact,
implying your attack could succeed for any d̂ if afforded enough time.

${ARCHIVE}/rsa_timing/${USER}.conf This file represents a set of attack parameters, including everything
(e.g., all public values) that E has access to by default. More specifically, it contains

• N̂, an RSA modulus (represented as a hexadecimal integer string), and

• ê, an RSA public exponent (represented as a hexadecimal integer string), such that ê · d̂ ≡ 1 (mod Φ(N̂)),

using one field per line. Note that (N̂, ê) is a (known) RSA public key associated with (N̂, d̂), i.e., the (unknown)
RSA private key.

${ARCHIVE}/rsa_timing/${USER}.R In many side-channel and fault attacks, the attacker is able to perform an
initial profiling or calibration phase: a common rationale for doing so is to support selection or fine-tuning of
parameters for a subsequent attack. With this in mind, a simulated replica R of the attack target is also provided.
R is identical to T , bar the fact it reads the following input (one field per line)

• c̄, an RSA ciphertext (represented as a hexadecimal integer string),

• N̄, an RSA modulus (represented as a hexadecimal integer string), and

• d̄, an RSA private exponent (represented as a hexadecimal integer string),

from stdin. In contrast to T , this means R will use the chosen RSA private key (N̄, d̄) to decrypt the chosen RSA
ciphertext c̄. Keep in mind that R uses Montgomery multiplication, so functions correctly iff. gcd(N̄, b) = 1.

3.4.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material d̂. When executed using a command of the form

./attack ${USER}.T ${USER}.conf

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/rsa_timing/${USER}.exam.
5MonPro [9, Section 2] perhaps offers a more direct way to explain this: steps 1 and 2 are the integer multiplication and Montgomery

reduction written both separately and abstractly, whereas T realises them concretely using the integrated CIOS algorithm.

git # 4c6e4beb @ 2024-03-11 8

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.5. Challenge #5: an attack based on execution time

3.5.1. Background

Imagine you encounter a server, denoted T , which houses an ageing but still operational 32-bit Katmai model
Intel Pentium III micro-processor. A datasheet for this micro-processor shows that it has a 16 kilobyte, 4-way
set-associative L1 data cache with 32 byte cache lines. Since around 1999, the server has performed a mission-
critical back-office role in a banking application: you discover it acts as a primitive form of HSM, performing
DES encryption on behalf of front-end clients. An attacker E interacts with T , which stores the embedded,
security-critical data (a cipher key), as follows:

E T

k̂

m

c

Λ |= execution latency

c = DES.Enc(k̂,m)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
plaintext) toT , 2)T performs the computation detailed (i.e., it encrypts the plaintext using the cipher key), then 3)
T provides some output (a ciphertext) to E. During such an interaction, E is also able to observe (i.e., measure) the
computation performed by T , so attempts to exploit this fact. Note that the ability to observe execution latency
is plausible, because E can simply record how long T takes to respond with the output associated with a given
input (noting the potential for experimental noise while doing so).

3.5.2. Material

${ARCHIVE}/des_cache/${USER}.T This executable simulates interaction with the attack target T . When exe-
cuted it will read the following input

• m, a 1-block DES plaintext (represented as a length-prefixed, hexadecimal octet string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, an execution latency measured in clock cycles (represented as a decimal integer string), and

• c, a 1-block DES ciphertext (represented as a length-prefixed, hexadecimal octet string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• T uses a software implementation of DES, based on that written by Richard Outerbridge [12, Part V].

• DES has a 64-bit block length, and, although it notionally accepts a 64-bit cipher key, the effective cipher key
length is in fact 56 bits: the remaining 8 bits support error detection via a parity code. You can ignore the
parity bits, meaning many 64-bit candidate cipher keys will be valid when used in place of k̂ (since only the
56 bits actually used by DES are relevant).

• The cited source code uses a set of eight separate S-box look-up tables. Each look-up table has 64 entries
of type unsigned long (i.e., a 64-bit unsigned integer), so will consume 512 bytes of memory. Doing so
improves efficiency: a look-up table captures the function of an associated S-box plus the (inefficient) P- and
E-permutations. However, the implementation actually used byT differs slightly. Given each of the look-up
table entries holds 32 bits of content, the type of entries has been altered to unsigned int. Once loaded, an
entry is simply cast into unsigned long, roughly halving the memory footprint with no impact on efficiency.
Given the 32-byte L1 cache line size, and that each look-up table is aligned to a 32-byte boundary, each cache
line can therefore accommodate eight full 32-bit entries.

• To perform the role described, the implementation

1. invokes the deskey function to pre-compute the round keys from a given cipher key, then

2. invokes the des function to perform an encryption operation.

git # 4c6e4beb @ 2024-03-11 9

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Within the des function, scrunch and unscrun are used to convert a sequence of eight 8-bit bytes to and from
a 64-bit integer (held as two 32-bit halves) before and after desfunc performs the encryption operation itself.

• You can assume that when an encryption operation is performed, i.e., when the des function is invoked, the
cache contains no S-box content: any cache-hits or -misses during encryption therefore depend only on k̂ and
m, as does the execution latency.

${ARCHIVE}/des_cache/${USER}.R In many side-channel and fault attacks, the attacker is able to perform an
initial profiling or calibration phase: a common rationale for doing so is to support selection or fine-tuning of
parameters for a subsequent attack. With this in mind, a simulated replica R of the attack target is also provided.
R is identical to T , bar the fact it reads the following input (one field per line)

• m̄, a 1-block DES plaintext (represented as a length-prefixed, hexadecimal octet string), and

• k̄, a DES cipher key (represented as a length-prefixed, hexadecimal octet string),

from stdin. In contrast toT , this meansRwill use the chosen DES cipher key k̄ to encrypt the chosen DES plaintext
m̄.

3.5.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material k̂. When executed using a command of the form

./attack ${USER}.T

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/des_cache/${USER}.exam.

3.6. Challenge #6: an attack based on power consumption

3.6.1. Background

Imagine you are tasked with attacking a device, denoted T . The device is a Self Encrypting Disk (SED): the
underlying disk only ever stores encrypted data, which is encrypted (before writing) and decrypted (after reading)
using XTS-AES-128 [3]. The decryption of data uses an XTS-AES-128 key embedded inT , which is initially derived
from a user-selected password p, i.e., k̂ = f (p) for a derivation function f . Each time the SED is powered-on, a

password attempt/guess g is entered and a check whether k̂ ?
= f (g) then enforced; if the check fails, then the SED

will refuses all further attempts to interact with it. E is lucky, and gets one-time access to T for a limited period of
time while it is already powered-on (implying the the password check has already been performed). An attacker
E interacts with T , which stores the embedded, security-critical data (some key material), as follows:

E T

k̂ = k̂1 ∥ k̂2

(j, i)

m

Λ |= power consumption

m = XTS-AES-128.blockDec(k̂, c, i, j)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
block and sector address) to T , 2) T performs the computation detailed (i.e., it reads and decrypts the addressed
ciphertext block), then 3) T provides some output (a plaintext) to E. During such an interaction, E is also able to
observe (i.e., measure) the computation performed by T , so attempts to exploit this fact. Note that E provides
a power supply and clock signal to T ; direct access to the power supply means it is plausible for the former to
observe power consumption of the later. Doing so will yield at least one sample per instruction executed, due to
the sample rate of the oscilloscope used relative to the clock frequency demanded by and supplied to T .

git # 4c6e4beb @ 2024-03-11 10

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.6.2. Material

${ARCHIVE}/aes_power/${USER}.T This executable simulates interaction with the attack target T . When exe-
cuted it will read the following input

• j, a block address (represented as a decimal integer string), and

• i, a sector address, i.e., a 1-block XTS-AES-128 tweak (represented as a length-prefixed, hexadecimal octet
string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, a power consumption trace (the format and semantics of which are explained further below), and

• m, a 1-block XTS-AES-128 plaintext (represented as a length-prefixed, hexadecimal octet string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• T uses an AES-128 implementation, which implies 128-bit block and cipher key lengths; following the
notation in [1, Figure 5], note that Nb = 4 and Nr = 10 means a (4 × 4)-element state matrix is used in a total
of 11 rounds.

• More concretely, it is an 8-bit, memory-constrained implementation with the S-box held as a 256 B look-up
table in memory. In line with the goal of minimising the memory footprint, the round keys are not pre-
computed: each encryption takes the cipher key and evolves it forward, step-by-step, to form successive
round keys for use during key addition. However, decryption is more complicated because the round keys
must be used in the reverse order. One possibility would be to store the last round key as well as the
cipher key, and evolve this backward through each round key. To avoid the increased demand on (secure,
non-volatile) storage,T instead opts to first evolve the cipher key forward into the last round key, then evolve
this backward through each round key.

• The underlying disk used byT has a 64 GiB capacity and uses Advanced Format (AF) 4 KiB sectors. As such,
each of the 16777216 sectors contains 256 blocks of AES-128 ciphertext: valid use of T demands the block
address satisfies 0 ≤ j < 256, and the sector address satisfies 0 ≤ i < 16777216 (which, since this implies only
LSB24(i) is relevant, is equivalent to saying MSB104(i) = 0). E can use any j and i as input to T : if either is
invalid, it uses a null ciphertext (i.e., 16 zero bytes, versus a ciphertext read from the disk itself) but otherwise
functions as normal.

• T pre-computes the 256 possibilities of α j, which are stored in a 4096 B look-up table. As a result, it is
reasonable to assume AES-128 invocations dominate the computation it will perform for each interaction.

• Each power consumption trace Λ is a comma-separated line of the form

l, λ0, λ1, . . . , λl−1

where

– l (represented as a decimal integer string), specifies the trace length, and

– a given λi (represented as a decimal integer string), specifies the i-th of l power consumption samples,
each constituting an 8-bit, unsigned decimal integer: in short, this means 0 ≤ λi < 256 for 0 ≤ i < l.

${ARCHIVE}/aes_power/${USER}.R In many side-channel and fault attacks, the attacker is able to perform an
initial profiling or calibration phase: a common rationale for doing so is to support selection or fine-tuning of
parameters for a subsequent attack. With this in mind, a simulated replica R of the attack target is also provided.
R is identical to T , bar the fact it reads the following input (one field per line)

• j̄, a block address (represented as a decimal integer string),

• ī, a sector address, i.e., a 1-block XTS-AES-128 tweak (represented as a length-prefixed, hexadecimal octet
string),

• c̄, a 1-block XTS-AES-128 ciphertext (represented as a length-prefixed, hexadecimal octet string), and

• k̄, an XTS-AES-128 key (represented as a length-prefixed, hexadecimal octet string),

from stdin. In contrast to T , this means R will use the chosen key k̄ to decrypt the chosen ciphertext c̄.

git # 4c6e4beb @ 2024-03-11 11

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.6.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material k̂. When executed using a command of the form

./attack ${USER}.T

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/aes_power/${USER}.exam.

3.7. Challenge #7: an attack based on an injected fault

3.7.1. Background

Imagine you are tasked with attacking a device, denoted T , which houses an 8-bit Intel 8051 micro-processor.
More specifically, T represents an ISO/IEC 7816 compliant contact-based smart-card used within larger devices as
a cryptographic co-processor module: using a standardised protocol (or API), it supports secure key generation
and storage plus off-load of some cryptographic operations. An attacker E interacts with T , which stores the
embedded, security-critical data (a cipher key), as follows:

E T

k̂

m

c

∆ |= clock glitch

c = AES-128.Enc(k̂,m)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
plaintext) to T , 2) T performs the computation detailed (i.e., it encrypts the plaintext using the cipher key), then
3) T provides some output (a ciphertext) to E. During such an interaction, E is also able to induce faults during
the computation performed by T , so attempts to exploit this fact. Note that E provides a power supply and clock
signal to T ; direct access to the clock signal means it is plausible for the former to influence the latter, e.g., causing
a malfunction by supplying an irregular clock signal (or ‘glitch’). One malfunction, or fault, can be induced per
interaction with T : it will act to randomise one element of the state matrix used by AES-128, at a chosen point
during the associated encryption.

3.7.2. Material

${ARCHIVE}/aes_fault/${USER}.T This executable simulates interaction with the attack target T . When exe-
cuted it will read the following input

• ∆, a fault specification (the format and semantics of which are explained further below), and

• m, a 1-block AES-128 plaintext (represented as a length-prefixed, hexadecimal octet string),

from stdin using one field per line, and then write the following output (one field per line)

• c, a 1-block AES-128 ciphertext (represented as a length-prefixed, hexadecimal octet string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• T uses an AES-128 implementation, which clearly implies 128-bit block and cipher key lengths; following
the notation in [1, Figure 5], the fact that Nb = 4 and Nr = 10 means a (4 × 4)-element state matrix is used in
a total of 11 rounds where

– the 0-th round consists of the AddRoundKey round function alone,

– the 1-st to 9-th rounds consist of the SubBytes, ShiftRows, MixColumns, then AddRoundKey round
functions, and

git # 4c6e4beb @ 2024-03-11 12

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– the 10-th round consists of the SubBytes, ShiftRows, then AddRoundKey round functions.

• More concretely, it is an 8-bit, memory-constrained implementation with the S-box held as a 256 B look-up
table in memory. In line with the goal of minimising the memory footprint, the round keys are not pre-
computed: each encryption takes the cipher key and evolves it forward, step-by-step, to form successive
round keys for use during key addition.

• The fault specification is either a comma-separated line of the form

r, f , p, i, j

where

1. r (represented as a decimal integer string) specifies the round in which the fault occurs, implying
0 ≤ r < 11,

2. f (represented as a decimal integer string) specifies the round function in which the fault occurs via

f =

0 for a fault in the AddRoundKey round function
1 for a fault in the SubBytes round function
2 for a fault in the ShiftRows round function
3 for a fault in the MixColumns round function

3. p (represented as a decimal integer string) specifies whether the fault occurs before or after execution
of the round function via

p =
{

0 for a fault before the round function
1 for a fault after the round function

and

4. i and j (both represented as decimal integer strings), specify the row and column of the state matrix
which the fault occurs in, implying 0 ≤ i, j < 4

or a blank line. In the latter case, no fault will be induced; this will obviously yield the correctly encrypted
ciphertext for a given plaintext.

• The fault randomises one element of the state matrix: this can be captured by writing the resulting value as
si, j ⊕ δ where δ is a (random) difference introduced by the fault. Keep in mind that faults such that δ = 0 are
possible, and, since si, j ⊕ δ = si, j ⊕ 0 = si, j, this effectively means no fault will be induced in such cases.

3.7.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material k̂. When executed using a command of the form

./attack ${USER}.T

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/aes_fault/${USER}.exam.

3.8. Challenge #8: an attack based on an injected fault

3.8.1. Background

Imagine you are tasked with attacking a device, denoted T , which houses an 8-bit Intel 8051 micro-processor.
More specifically, T represents an ISO/IEC 7816 compliant contact-based smart-card used within larger devices as
a cryptographic co-processor module: using a standardised protocol (or API), it supports secure key generation
and storage plus off-load of some cryptographic operations. An attacker E interacts with T , which stores the
embedded, security-critical data (a private key), as follows:

git # 4c6e4beb @ 2024-03-11 13

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

E T

(N̂, p̂, q̂, d̂)

m

σ

∆ |= clock glitch

Λ |= execution latency

σ = RSA.Sig((N̂, p̂, q̂, d̂),m) = md̂ (mod N̂)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
message) to T , 2) T performs the computation detailed (i.e. it signs the message using the private key), then 3) T
provides some output (a signature) to E. During such an interaction, E is also able to observe (i.e., measure) and
influence the computation performed by T , so attempts to exploit this fact. Note that E provides a power supply
and clock signal to T ; direct access to the clock signal means it is plausible for the former to influence the latter,
e.g., causing a malfunction by supplying an irregular clock signal (or ‘glitch’).

3.8.2. Material

${ARCHIVE}/rsa_fault/${USER}.T This executable simulates interaction with the attack target T . When exe-
cuted it will read the following input

• ∆ a fault specification (represented as a decimal integer string, the format and semantics of which are
explained further below),

• m, a message (represented as a hexadecimal integer string),

from stdin using one field per line, and then write the following output (one field per line)

• Λ, an execution latency measured in clock cycles (represented as a decimal integer string), and

• σ, an RSA signature on m (represented as a hexadecimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• Internally, T uses a co-processor to support multi-precision integer arithmetic: by storing operands in an
internal, special-purpose register file, it is able to perform single-cycle computation of modular inversion
(i.e., 1/x (mod n)), negation (i.e., −x (mod n)), addition (i.e., x+ y (mod n)), subtraction (i.e., x− y (mod n)),
and multiplication (i.e., x · y (mod n)).

• T uses the co-processor to realise a CRT-based [11] implementation of RSA decryption, using a Gauss-based
recombination step.

• E can induce a fault, via a ‘glitch’ in the clock signal supplied to T ; the fault is controlled using ∆, in the
sense that

∆ < 0 ⇒ no fault induced
∆ ≥ 0 ⇒ fault induced in clock cycle ∆

Through analysis of the fault model, it is known that inducing a fault will impact the co-processor ALU; if a
fault is induced in clock cycle ∆, computation by (or output of) the ALU in that clock cycle is corrupted (or
randomised).

${ARCHIVE}/rsa_fault/${USER}.conf This file represents a set of attack parameters, including everything (e.g.,
all public values) that E has access to by default. More specifically, it contains

• N̂, an RSA modulus (represented as a hexadecimal integer string), and

• ê, an RSA public exponent (represented as a hexadecimal integer string), such that ê · d̂ ≡ 1 (mod Φ(N̂)),

using one field per line. Note that (N̂, ê) is a (known) RSA public key associated with (N̂, d̂), i.e., the (unknown)
RSA private key.

git # 4c6e4beb @ 2024-03-11 14

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3.8.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material d̂. When executed using a command of the form

./attack ${USER}.T ${USER}.conf

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/rsa_fault/${USER}.exam.

3.9. Challenge #9: an attack based on an inherent fault

3.9.1. Background

Imagine you are tasked with attacking a server, denotedT , which houses a ‘cloned’ 64-bit MIPS64 micro-processor:
the reduced cost (versus a legitimate alternative) made it an attractive option for the owner, who was forced to
economise when upgrading an old data center. T is used by several front-line e-commerce servers, which offload
computation relating to the TLS handshake. More specifically, T is used to compute the RSA decryption required
by RSA-based key exchange. An attacker E interacts with T , which stores the embedded, security-critical data (a
private key), as follows:

E T

(N̂, d̂)

c

m

m = RSA.Dec((N̂, d̂), c) = cd̂ (mod N̂)

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (a
ciphertext) to T , 2) T performs the computation detailed (i.e., it decrypts the ciphertext using the private key),
then 3) T provides some output (a plaintext) to E. Unfortunately, however, the micro-processor used by T has
a defect: hardware within the ALU which supports (64 × 64)-bit integer multiplication has a (deterministic) bug,
which means the output (i.e., the product x · y) is incorrect for certain input (i.e., certain x and/or y).

3.9.2. Material

${ARCHIVE}/rsa_bug/${USER}.T This executable simulates interaction with the attack targetT . When executed
it will read the following input

• c, an RSA ciphertext (represented as a hexadecimal integer string),

from stdin using one field per line, and then write the following output (one field per line)

• m, an RSA plaintext (represented as a hexadecimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• Because T houses a 64-bit micro-processor, it employs a base-264 representation of multi-precision integers
throughout. Put another way, since w = 64, it selects b = 2w = 264.

• Rather than a CRT-based approach, T uses a left-to-right binary exponentiation [5, Section 2.1] algorithm
to compute m = cd̂ (mod N̂).Montgomery multiplication [10] is harnessed to improve efficiency; following
notation in [9], a CIOS-based [9, Section 5] approach is used to integrate6 an integer multiplication with a
subsequent Montgomery reduction.

• Following the notation in [5], d̂ is assumed to have l + 1 bits such that d̂l = 1 for some l. However, it has
been (artificially) selected so 0 ≤ d̂ < 264 to limit the duration of an attack: you should not rely on this fact,
implying your attack could succeed for any d̂ if afforded enough time.

6MonPro [9, Section 2] perhaps offers a more direct way to explain this: steps 1 and 2 are the integer multiplication and Montgomery
reduction written both separately and abstractly, whereas T realises them concretely using the integrated CIOS algorithm.

git # 4c6e4beb @ 2024-03-11 15

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Consider the base-216 expansion of an integer t, i.e., t = ⟨t0, t1, . . . , tn−1⟩(216). We say that t is γ-poisoned iff.
there exists an i such that 0 ≤ i < n and ti = γ, i.e., at least one of the limbs is equal to γ. Recall that the
integer multiplier used by T is defective: for

α = DEAD(16)
β = BEEF(16)

it will incorrectly compute the product x · y iff. x is α-poisoned and y is β-poisoned.

${ARCHIVE}/rsa_bug/${USER}.conf This file represents a set of attack parameters, including everything (e.g.,
all public values) that E has access to by default. More specifically, it contains

• N̂, an RSA modulus (represented as a hexadecimal integer string), and

• ê, an RSA public exponent (represented as a hexadecimal integer string), such that ê · d̂ ≡ 1 (mod Φ(N̂)),

using one field per line. Note that (N̂, ê) is a (known) RSA public key associated with (N̂, d̂), i.e., the (unknown)
RSA private key.

3.9.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material d̂. When executed using a command of the form

./attack ${USER}.T ${USER}.conf

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/rsa_bug/${USER}.exam.

3.10. Challenge #10: an attack based on a erroneous input

3.10.1. Background

Imagine you own a cryptographic accelerator, denoted T : it is used as a low-cost HSM in your data center,
supporting secure key generation and storage plus off-load of various cryptographic operations via a standardised
protocol (or API). An attacker E interacts with T , which stores the embedded, security-critical data (a scalar), as
follows:

E T

k̂

P

Q

Q =
[
k̂
]

P

Each interaction can be described as a series of potentially adaptive steps, where 1) E provides some input (an
input point) to T , 2) T performs the computation detailed (i.e., multiplies the input point by the scalar), then
3) T provides some output (an output point) to E. Although it currently functions correctly, an electrical fault
demands that T is replaced. However, doing so presents a serious problem: the API cannot be used to export k̂,
so a replacement will have to be generated and used thereafter. This means compatibility with existing data sets
will be lost, unless k̂ itself can be recovered by some other means.

3.10.2. Material

${ARCHIVE}/ecc_invalid/${USER}.T This executable simulates interaction with the attack target T . When
executed it will read the following input

• Px, the x-coordinate of elliptic curve point P = (Px,Py) (represented as a hexadecimal integer string), and

• Py, the y-coordinate of elliptic curve point P = (Px,Py) (represented as a hexadecimal integer string),

from stdin using one field per line, and then write the following output (one field per line)

git # 4c6e4beb @ 2024-03-11 16

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Qx, the x-coordinate of elliptic curve point Q = (Qx,Qy) =
[
k̂
]

P (represented as a hexadecimal integer string),
and

• Qy, the y-coordinate of elliptic curve point Q = (Qx,Qy) =
[
k̂
]

P (represented as a hexadecimal integer string),

to stdout using one field per line. Execution continues this way, i.e., repeatedly reading input then writing output,
until terminated by the user or some form of internal error. Note that:

• T uses an left-to-right binary scalar multiplication (i.e., an additive analogue of [5, Section 2.1]) to compute
Q =

[
k̂
]

P. In doing so, it assumes use of the NIST-P-256 elliptic curve

E(Fp) : y2 = x3 + a4x + a6

for standardised [4] domain parameters p, a4, and a6.

• More concretely, T uses OpenSSL to support arithmetic on the elliptic curve. You can browse the associated
source code at

http://github.com/openssl

noting that the choice outlined above implies use of ec_GFp_simple_add and ec_GFp_simple_dbl to realise
the (additive) group operation, i.e., to compute either a point addition or doubling, within the scalar
multiplication.

• Crucially, T applies no checks to either the input or output points (e.g., to check whether P ∈ E(Fp) and reject
P if not).

• At least from a Mathematical point of view, there is no valid affine representation of the point at infinity. If
computation of

[
k̂
]

P does yield the point at infinity, T therefore signals this fact by producing

Q = (Qx,Qy) = (0, 0)

as output (rather than some special-purpose mechanism, e.g., an error or an alternative output format).

3.10.3. Tasks

1. Write a program that simulates the attacker E, by interacting with and attacking the simulated attack target,
i.e., realising the goal of recovering the target material k̂. When executed using a command of the form

./attack ${USER}.T

the attack should be invoked on the named simulated attack target. Use stdout to record any intermediate
output you deem relevant, followed finally by two lines which clearly detail a) the target material recovered,
plus b) the total number of interactions with the simulated attack target that were required to do so.

2. Answer the written, exam-style questions in ${ARCHIVE}/ecc_invalid/${USER}.exam.

References

[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST) Federal Infor-
mation Processing Standard (FIPS) 197. 2001. url: http://csrc.nist.gov (see pp. 6, 11, 12).

[2] M. Bellare and P. Rogaway. “Optimal asymmetric encryption”. In: Advances in Cryptology (EUROCRYPT).
LNCS 950. Springer-Verlag, 1994, pp. 92–111 (see p. 4).

[3] Cryptographic Protection of Data on Block-Oriented Storage Devices. Institute of Electrical and Electronics Engi-
neers (IEEE) Standard 1619-2007. 2007. url: http://standards.ieee.org (see p. 10).

[4] Digital Signature Standard (DSS). National Institute of Standards and Technology (NIST) Federal Information
Processing Standard (FIPS) 186-2. 2000. url: http://csrc.nist.gov (see p. 17).

[5] D.M. Gordon. “A Survey of Fast Exponentiation Methods”. In: Journal of Algorithms 27 (1998), pp. 129–146
(see pp. 8, 15, 17).

[6] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specification Version
2.1. Internet Engineering Task Force (IETF) Request for Comments (RFC) 3447. 2003. url: http://tools.
ietf.org/html/rfc3447 (see p. 4).

git # 4c6e4beb @ 2024-03-11 17

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://github.com/openssl
http://csrc.nist.gov
http://standards.ieee.org
http://csrc.nist.gov
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

[7] B. Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. Internet Engineering Task Force (IETF) Request
for Comments (RFC) 2315. 1998. url: http://tools.ietf.org/html/rfc2315 (see p. 3).

[8] E. Käsper and P. Schwabe. “Faster and Timing-attack Resistant AES-GCM”. In: Cryptographic Hardware and
Embedded Systems (CHES). LNCS 5747. Springer-Verlag, 2009, pp. 1–17 (see p. 3).

[9] Ç.K. Koç, T. Acar, and B.S. Kaliski. “Analyzing and comparing Montgomery multiplication algorithms”. In:
IEEE Micro 16.3 (1996), pp. 26–33 (see pp. 8, 15).

[10] P.L. Montgomery. “Modular multiplication without trial division”. In: Mathematics of Computation 44.170
(1985), pp. 519–521 (see pp. 8, 15).

[11] J-J. Quisquater and C. Couvreur. “Fast decipherment algorithm for RSA public-key cryptosystem”. In: IEE
Electronics Letters 18.21 (1982), pp. 905–907 (see p. 14).

[12] B. Schneier. Applied Cryptography. 2nd. John Wiley & Sons, 2006. url: http://www.schneier.com/book-
applied.html (see p. 9).

git # 4c6e4beb @ 2024-03-11 18

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://tools.ietf.org/html/rfc2315
http://www.schneier.com/book-applied.html
http://www.schneier.com/book-applied.html

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A Representation and conversion

1.1. Integers

Concept. An integer string (or literal) is written as a string of characters, each of which represents a digit; the
set of possible digits, and the value being represented, depends on a base b. We read digits from right-to-left: the
least-significant (resp. most-significant) digit is the right-most (resp. left-most) character within the string. As
such, the 20-character string

x̂ = 09080706050403020100

represents the integer value

x̂ 7→

x̂19 · b19 + x̂18 · b18 + x̂17 · b17 + x̂16 · b16 + x̂15 · b15 +
x̂14 · b14 + x̂13 · b13 + x̂12 · b12 + x̂11 · b11 + x̂10 · b10 +
x̂9 · b9 + x̂8 · b8 + x̂7 · b7 + x̂6 · b6 + x̂5 · b5 +
x̂4 · b4 + x̂3 · b3 + x̂2 · b2 + x̂1 · b1 + x̂0 · b0

Of course the actual value depends on the base b in which we interpret the representation x̂:

• for a decimal integer string b = 10, meaning

x̂ 7→

x̂19 · 1019 + x̂18 · 1018 + x̂17 · 1017 + x̂16 · 1016 + x̂15 · 1015 +
x̂14 · 1014 + x̂13 · 1013 + x̂12 · 1012 + x̂11 · 1011 + x̂10 · 1010 +
x̂9 · 109 + x̂8 · 108 + x̂7 · 107 + x̂6 · 106 + x̂5 · 105 +
x̂4 · 104 + x̂3 · 103 + x̂2 · 102 + x̂1 · 101 + x̂0 · 100

7→

0(10) · 1019 + 9(10) · 1018 + 0(10) · 1017 + 8(10) · 1016 + 0(10) · 1015 +
7(10) · 1014 + 0(10) · 1013 + 6(10) · 1012 + 0(10) · 1011 + 5(10) · 1010 +
0(10) · 109 + 4(10) · 108 + 0(10) · 107 + 3(10) · 106 + 0(10) · 105 +
2(10) · 104 + 0(10) · 103 + 1(10) · 102 + 0(10) · 101 + 0(10) · 100

7→ 9080706050403020100(10)

whereas

• for a hexadecimal integer string b = 16, meaning

x̂ 7→

x̂19 · 1619 + x̂18 · 1618 + x̂17 · 1617 + x̂16 · 1616 + x̂15 · 1615 +
x̂14 · 1614 + x̂13 · 1613 + x̂12 · 1612 + x̂11 · 1611 + x̂10 · 1610 +
x̂9 · 169 + x̂8 · 168 + x̂7 · 167 + x̂6 · 166 + x̂5 · 165 +
x̂4 · 164 + x̂3 · 163 + x̂2 · 162 + x̂1 · 161 + x̂0 · 160

7→

0(16) · 1619 + 9(16) · 1618 + 0(16) · 1617 + 8(16) · 1616 + 0(16) · 1615 +
7(16) · 1614 + 0(16) · 1613 + 6(16) · 1612 + 0(16) · 1611 + 5(16) · 1610 +
0(16) · 169 + 4(16) · 168 + 0(16) · 167 + 3(16) · 166 + 0(16) · 165 +
2(16) · 164 + 0(16) · 163 + 1(16) · 162 + 0(16) · 161 + 0(16) · 160

7→ 42649378395939397566720(10)

Example. Consider the following Python 3.x program

t_0 = '09080706050403020100'

t_1 = int(t_0, 10)
t_2 = int(t_0, 16)

t_3 = ('{0:d}'.format(t_2))
t_4 = ('{0:X}'.format(t_2))

t_5 = ('{0:X}'.format(t_2)).zfill(20)

print('type(t_0) = {0!s:14s} t_0 = {1!s}'.format(type(t_0), t_0))
print('type(t_1) = {0!s:14s} t_1 = {1!s}'.format(type(t_1), t_1))
print('type(t_2) = {0!s:14s} t_2 = {1!s}'.format(type(t_2), t_2))
print('type(t_3) = {0!s:14s} t_3 = {1!s}'.format(type(t_3), t_3))
print('type(t_4) = {0!s:14s} t_4 = {1!s}'.format(type(t_4), t_4))
print('type(t_5) = {0!s:14s} t_5 = {1!s}'.format(type(t_5), t_5))

which, when executed, produces

git # 4c6e4beb @ 2024-03-11 19

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

type(t_0) = <class 'str'> t_0 = 09080706050403020100
type(t_1) = <class 'int'> t_1 = 9080706050403020100
type(t_2) = <class 'int'> t_2 = 42649378395939397566720
type(t_3) = <class 'str'> t_3 = 42649378395939397566720
type(t_4) = <class 'str'> t_4 = 9080706050403020100
type(t_5) = <class 'str'> t_5 = 09080706050403020100

as output. This is intended to illustrate that

• t_0 is an integer string (i.e., a sequence of characters),

• t_1 and t_2 are conversions of t_0 into integers, using decimal and hexadecimal respectively, and

• t_3 and t_4 are conversions of t_2 into strings (i.e., a sequence of characters), using decimal and hexadecimal
respectively.

Note that t_0 and t_4do not match: the conversion ignored the left-most zero character, because it is not significant
wrt. the associated integer value. If/when this issue is problematic, it can be resolved by using the zfill function
to left-fill the string (with zero characters) so it is of the required length. t_0 and t_5 do match, for example,
because the latter has been filled to ensure an overall length of 20 characters.

1.2. Octet strings

Concept. The term octet7 is normally used as a synonym for byte, most often within the context of communication
(and computer networks). Using octet is arguably more precise than byte, in that the former is always 8 bits whereas
the latter can8 differ. A string is a sequence of characters, and so, by analogy, an octet string9 is a sequence of octets:
ignoring some corner cases, it is reasonable to use the term “octet string” as a synonym for “byte sequence”.

To represent a given byte sequence, we use what can be formally termed a (little-endian) length-prefixed,
hexadecimal octet string. However, doing so requires some explanation: each element of that term relates to
a property of the representation, where we define a) little-endian10 to mean, if read left-to-right, the first octet
represents the 0-th element of the source byte sequence and the last octet represents the (n − 1)-st element of the
source byte sequence, b) length-prefixed11 to mean n, the length of the source byte sequence, is prepended to the
octet string as a single 8-bit12 length or “header” octet, and c) hexadecimal13 to mean each octet is represented by
using 2 hexadecimal digits. Note that, confusingly, hexadecimal digits within each pair will be big-endian: if read
left-to-right, the most-significant is first. For convenience, we assume the term octet string is a catch-all implying
all such properties from here on.

An example likely makes all of the above much clearer: certainly there is nothing complex involved. Concretely,
consider a 16-element byte sequence

uint8_t x[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }

defined using C. This would be represented as

x̂ = 10:000102030405060708090A0B0C0D0E0F

using a colon to separate the length and value fields:

• the length (LHS of the colon) is the integer n = 10(16) = 16(10), and

• the value (RHS of the colon) is the byte sequence x = ⟨00(16), 01(16), . . . , 0F(16)⟩ = ⟨0(10), 1(10), . . . , 15(10)⟩ ≡ x.

Note that the special-case of an empty byte sequence is valid: now starting with the 0-element byte sequence

uint8_t x[0] = { }

defined using C, setting n to 0 and x to an empty byte sequence yields the representation

x̂ = 00:

vs. say an empty or null string, which, in contrast, is an invalid octet string.
7http://en.wikipedia.org/wiki/Octet_(computing)
8http://en.wikipedia.org/wiki/Byte, for example, details the fact that the term “byte” can be and has been interpreted to mean a) a

group of n bits for n < w (i.e., smaller than the word size), b) the data type used to represent characters, or c) the (smallest) unit of addressable
data in memory: although POSIX mandates 8-bit bytes, for example, each of these cases permits an alternative definition.

9Note the octet string terminology stems from ASN.1 encoding; see, e.g., http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_
One.

10http://en.wikipedia.org/wiki/Endianness
11http://en.wikipedia.org/wiki/String_(computer_science)
12Although it simplifies the challenge associated with parsing such a representation, note that use of an 8-bit length implies an upper limit

of 255 elements in the associated byte sequence.
13http://en.wikipedia.org/wiki/Hexadecimal

git # 4c6e4beb @ 2024-03-11 20

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Hexadecimal

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Example. Consider the following Python 3.x program

import binascii

def octetstr2bytes(x) :
t = x.split(':') ; n = int(t[0], 16) ; x = binascii.a2b_hex(t[1])

if (n != len(x)) :
raise ValueError

else :
return x

def bytes2octetstr(x) :
n = '{0:02X}'.format(len(x)) ; x = binascii.b2a_hex(x).decode('ascii').upper()

return n + ':' + x

def bytes2seq(x) :
return [int(t) for t in x]

def seq2bytes(x) :
return bytearray([int(t) for t in x])

t_0 = [0xDE, 0xAD, 0xBE, 0xEF]
t_1 = bytes2octetstr(seq2bytes(t_0))

print('type(t_0) = {0!s:14s} t_0 = {1!s}'.format(type(t_0), t_0))
print('type(t_1) = {0!s:14s} t_1 = {1!s}'.format(type(t_1), t_1))

t_2 = '04:DEADBEEF'
t_3 = bytes2seq(octetstr2bytes(t_2))

print('type(t_2) = {0!s:14s} t_2 = {1!s}'.format(type(t_2), t_2))
print('type(t_3) = {0!s:14s} t_3 = {1!s}'.format(type(t_3), t_3))

which, when executed, produces

type(t_0) = <class 'list'> t_0 = [222, 173, 190, 239]
type(t_1) = <class 'str'> t_1 = 04:DEADBEEF
type(t_2) = <class 'str'> t_2 = 04:DEADBEEF
type(t_3) = <class 'list'> t_3 = [222, 173, 190, 239]

as output. This is intended to illustrate that

• If you start with a list (or sequence) t_0, then seq2bytes and bytes2octetstr will convert it first into
a byte sequence then an octet string: the fact that t_1 = 04:DEADBEEF implies n = 04(16) = 04(10) and
x = ⟨DE(16),AD(16),BE(16),EF(16)⟩, i.e., n = len(t_0) and x = t_0, so, for example, x1 = t_0[1] = AD(16).

• If you start with an octet string t_2, then octetstr2bytes and bytes2seq will convert it first into a byte
sequence then a list (or sequence): the fact that t_2 = 04:DEADBEEF implies n = 04(16) = 04(10) and x =
⟨DE(16),AD(16),BE(16),EF(16)⟩, i.e., n = len(t_3) and x = t_3, so, for example, x0 = t_3[0] = DE(16).

Note that the conversions are self-consistent in the sense that t_0 = t_3, or rather

t_0 = bytes2seq(octetstr2bytes(bytes2octetstr(seq2bytes(t_0)))).

git # 4c6e4beb @ 2024-03-11 21

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

	Introduction
	Guidance
	Content
	Challenge #1: an attack based on error messages
	Background
	Material
	Tasks

	Challenge #2: an attack based on error messages
	Background
	Material
	Tasks

	Challenge #3: an attack based on execution time
	Background
	Material
	Tasks

	Challenge #4: an attack based on execution time
	Background
	Material
	Tasks

	Challenge #5: an attack based on execution time
	Background
	Material
	Tasks

	Challenge #6: an attack based on power consumption
	Background
	Material
	Tasks

	Challenge #7: an attack based on an injected fault
	Background
	Material
	Tasks

	Challenge #8: an attack based on an injected fault
	Background
	Material
	Tasks

	Challenge #9: an attack based on an inherent fault
	Background
	Material
	Tasks

	Challenge #10: an attack based on a erroneous input
	Background
	Material
	Tasks

	Representation and conversion
	Integers
	Octet strings

