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• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native appa available for Android and iOS, or

2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-
based unit portal.

• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are
managed by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a
workstation that fails to boot, an error when you try to use some software, or you just cannot log into
your account), they can help: you can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The worksheet is written assuming you work in the lab. using supported UoB-managed equipment. If you
need or prefer to use your own equipment, however, there are various unsupportedb alternatives available:
for example, you could a) manually install any software dependencies yourself, or b) use the unit-specific
Vagrantc box by following instructions at

http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md

• The purpose of the worksheet is to provide a) a tutorial-style introduction to selected technologies or
concepts, and/or b) a means to explore them via hands-on tasks and challenges. Note that the worksheet
is not assessed at all: if you are confident that you already understand the content, there is no problem
with nor penalty for totally ignoring it.

• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these
include both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit
portal) instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no

guarantees about nor support for their use will be offered.
chttp://www.vagrantup.com
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COMS30048 lab. worksheet #4

Before you start work, download (and, if need be, unarchivea) the file

http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-4.tar.gz

somewhere secureb in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows.

aFor example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-4.tar.gz in a terminal window, 2) use ark directly:
use the Activities desktop menu item, search for and execute ark, use the Archive→Openmenu item to open lab-4.tar.gz, then extract
the contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin,
right-click on lab-4.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

1. Introduction

Concept. Although greater precision can be important, a reasonable and intuitive way to define the concept
of a (cryptographic) implementation attack is to pitch it as an alternative to traditional cryptanalysis: the latter
focuses on an abstract specification (e.g., the design of a protocol or primitive) of a given target, whereas the
former focuses on a concrete implementation (i.e., hardware and/or software realising said protocol or primitive)
and so behaviour of said target. By implication, this positions the two styles of attack as practice-centric
(e.g., Engineering-centric) and theory-centric (e.g., Mathematics-centric) respectively, although, in reality, they
overlap; a clean separation is impossible. At a high level, implementation attacks can be modelled as follows:

E T

µ

direct input

direct output

indirect input: ∆

indirect output: Λ

computation

There are two parties1 involved, namely a) the attackerE (left) and b) the attackee, or targetT (right); you could
think of E as a malicious user of T , with the latter executing some functionality (i.e., performing computation)
on behalf of the former. Communication between the parties uses a pre-defined protocol (or API), such that T ,
for example, expects to

1. receive direct input from E,

2. perform some sort of computation, then

3. send direct output to E.

If the model captures security-related functionality, security-critical data is typically involved. Examples
include a) key material embedded in T (in this case denoted by µ), or b) encrypted messages sent by T .
E cannot access this target data directly, so their goal will be to recover it by other means; using the same
examples, this implies their goal is to mount a successful key recovery or plaintext recovery attack respectively.
Based on the direct input and output alone, one strategy would be to use traditional cryptanalytic techniques.
However, the model allows an alternative: it is also possible for E to harness indirect inputs and/or outputs to
and/or from T . The former is exemplified by E actively exerting influence over, and so altering the behaviour
of T (cf. fault attack2), and the latter by E passively monitoring the behaviour of T (cf. side-channel attack3).
The idea is that by doing so, E might improve their attack with respect to metrics such as effectiveness (e.g.,

1This model is intended to capture a broad set of possibilities: one can see, for example, that it captures a traditional client-server
application (with E as a web-browser and T as a web-server), or a payment application (with E and T as chip-and-pin terminal and card).
The communication medium and wire protocol used are irrelevant, but use of local (e.g., USB) or remote (e.g., the Internet) instances are
valid depending on the scenario.

2http://en.wikipedia.org/wiki/Differential_fault_analysis
3http://en.wikipedia.org/wiki/Side-channel_attack
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whether or how precisely they can recover µ) or efficiency (e.g., the resources, such as time, required to recover
µ).

Example. The importance of implementation attacks can be motivated by observing that with a goal of
sufficient value, an attacker might not behave as they should (i.e., what we expect) but however they can. To
render ineffective the security afforded by some encryption scheme, for example, they might target 1) the
abstract, “on paper” specification or 2) the concrete, in practice implementation of said scheme. Typically they
will select the option for which they can succeed most easily (colloquially, the weakest link). If security of
the scheme is (provably) related to some hard Mathematical problem, traditional cryptanalysis is unlikely to
be easy at all. Opting for an implementation attack, however, offers the potential to bypass the associated
difficulty: the hard problem might be rendered moot if the attack instead focuses on a feature (e.g., flaw) in the
implementation of it.

Consider a simple example scenario, intended to offer a starting point within this field and thus focus on
the central concepts. Rather than cryptography, it deals with a more general security challenge: imagine T as
representing a UNIX-based computer, which a user (there is only one, so no user name is required) can log
into4 by supplying the correct password5. Per the abstract overview above, this now concrete scenario can be
modelled as follows:

E T

P

G

r

Λ |= execution latency

r =Match(P,G)

The protocol, which involves both indirect input and output, is such that T

1. receives a password attempt, or guess G from E,

2. compares G with P, the correct, stored password, then

3. sends the result r to E.

Even if r was not sent to E, it would clearly still learn whether the associated attempt G was correct: if the
attempt is incorrect then access to T is allowed, whereas if the attempt is correct then access is disallowed.
Modulo the (non-trivial) challenge of selecting a “strong” P, if the attacker Ewants access toT they seem forced
into a strategy of guessing the password. However, notice that some indirect output (per the lower, dashed
arrow) is also available. More specifically, E can measure how long T takes to compute r (i.e., the execution
latency of Match), by simply measuring how long it takes respond.

The goal of this lab. worksheet is to explore the premise that, in this case and often more generally, doing
so enables E to mount an effective, efficient attack on T . It uses a hands-on but pragmatic approach, centered
around simulated instances of T and E. Put another way, it ignores what E and T are, in specific terms, and
instead models them using programs; doing so is less realistic by definition, but, as a trade-off, allows a focus
on what E and T do, and hence on the underlying concepts.

2. Developing simulated attack target and attack implementations

2.1. An attack target implementation

The first problem is how to realise a simulated version of T , the attack target; the C source code in Figure 1
acts as an example solution. Focusing on Figure 1b specifically, two functions constitute the implementation:

1. match (Lines #10 to #31 of Figure 1b) compares P and G: it produces

r =

{
0 if P , G
1 if P = G

The function has three main steps:

• the strlen function is used to compute the lengths of (i.e., number of characters in) each string,

4http://en.wikipedia.org/wiki/Login
5http://en.wikipedia.org/wiki/Password
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8 #ifndef __TARGET_H
9 #define __TARGET_H

10
11 #include <stdbool.h>
12 #include <stdint.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15
16 #include <string.h>
17
18 #endif

(a) ${ARCHIVE}/target.h

8 #include "target.h"
9

10 int match( int* r, const char* P, const char* G ) {
11 int Lambda;
12
13 int l_P = strlen( P );
14 int l_G = strlen( G );
15
16 Lambda = 0;
17
18 if( l_P != l_G ) {
19 *r = 0; return Lambda;
20 }
21
22 Lambda = 1;
23
24 for( int i = 0; i < l_G; i++, Lambda = Lambda + 1 ) {
25 if( P[ i ] != G[ i ] ) {
26 *r = 0; return Lambda;
27 }
28 }
29
30 *r = 1; return Lambda;
31 }
32
33 int main( int argc, char* argv[] ) {
34 char G[ 8 + 1 ], P[] = "password";
35
36 while( true ) {
37 int Lambda, r;
38
39 if( 1 != fscanf( stdin, "%8s", G ) ) {
40 abort();
41 }
42
43 if( feof( stdin ) ) {
44 break;
45 }
46
47 Lambda = match( &r, P, G );
48
49 fprintf( stdout, "%d\n", Lambda );
50 fprintf( stdout, "%d\n", r );
51
52 fflush( stdout );
53 fflush( stderr );
54 }
55
56 return 0;
57 }

(b) ${ARCHIVE}/target.c

Figure 1: A simulated attackee, or target matching the example in Section 1.
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• an if statement checks whether or not the lengths are equal (if not, the strings do not match), then

• a for statement compares corresponding characters within the strings (if any are unequal, the strings
do not match).

Note that, in doing so, it uses Lambda to keep track of the number of steps taken; this is used as a proxy
for the real, wall-clock execution latency.

2. main (Lines #33 to #57 of Figure 1b) implements the protocol required to modelT , using a while statement
to iterates (indefinitely) over three main steps: each iteration will

• read input from stdin (breaking from the loop if there is no input to read),

• invoke match to compare P and G, then, finally,

• write output to stdout.

Using a terminal6 to execute the compiled result will reproduce this diagram:

targetterminal

s
t
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nG
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tLambda, r
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r

Put another way, the executing instance of target has, in common with any other UNIX-based process,
standard streams7 termed stdin, stdout, and stderr, which it uses for input, output, and errors respectively,
and which are connected to the terminal in which it was executed by default. As such, a) input to the executing
instance of target is read from the terminal via stdin, and b) output from the executing instance of target is
written to the terminal via stdout.

2.2. An attack(er) implementation

Next we turn our attention to a simulated version of E, the attack(er). Assuming it is realised as another
executable, this time called attack, the goal is to reproduce the following

targetattackterminal
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which implies the (simulated) attacker executes the (simulated) attack target as a sub-process; the former
essentially automates interaction with the latter, using the same mechanisms (i.e., stdin and stdout) as in the
previous, manual case.

The problem is, how can this be achieved? To provide an answer, several implementations of attack are
provided: each one has a roughly similar structure, but uses a different programming language. In each case,
execution is initiated from some entry point (e.g., a main function in C) which produces two separate processes
(as implied by the diagram above):

1. a (sub-)process representing T formed by executing target, and

2. a process representing E formed by calling the attack function. This process interacts with the executing
instance of target with support from handles (called target_in and target_out) on the stdin and
stdout streams attached to target, and a function (or method) called interactwhich essentially acts as
a layer of abstraction: given a guess G, this performs the steps required to interact with target.

6That is, within a BASH shell (or prompt, e.g., a terminal window) or similar.
7https://en.wikipedia.org/wiki/Standard_streams
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7 import sys, subprocess
8
9 def interact( G ) :

10 # send G to attack target.
11
12 target_in.write( ( '{0:s}\n'.format( G ) ).encode( 'ascii' ) ) ; target_in.flush()
13
14 # receive ( Lambda, r ) from attack target.
15
16 Lambda = int( target_out.readline().strip() )
17 r = int( target_out.readline().strip() )
18
19 return ( Lambda, r )
20
21 def attack() :
22 # select a hard-coded guess ...
23
24 G = 'pencil'
25
26 # ... then interact with the attack target.
27
28 ( Lambda, r ) = interact( G )
29
30 # print all of the inputs and outputs.
31
32 print( 'G = {0:s}'.format( G ) )
33 print( 'Lambda = {0:d}'.format( Lambda ) )
34 print( 'r = {0:d}'.format( r ) )
35
36 if ( __name__ == '__main__' ) :
37 # produce a sub-process representing the attack target
38
39 target = subprocess.Popen( args = sys.argv[ 1 ],
40 stdout = subprocess.PIPE,
41 stdin = subprocess.PIPE )
42
43 # construct handles to attack target standard input and output
44
45 target_out = target.stdout
46 target_in = target.stdin
47
48 # execute a function representing the attacker
49
50 attack()

(a) ${ARCHIVE}/attack.py

Figure 2: A simulated attacker matching the example in Section 1.
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We focus on the Python implementation shown in Figure 2 as an exemplar, because it is more concise (and
arguably “cleaner”) and illustrates the concepts more clearly. Beyond this, some language-specific detail
follows:

• attack.py is a Python-based implementation; it is relatively simple, in part due to use of the powerful
subprocessmodule.

• attack.[ch] is a C-based implementation; it is relatively complex, in part because use of C demands
lower-level interaction with the kernel (via system calls for process creation and control).

The standard C library includes system, which can execute external programs, but not interact with them.
It is possible to extend this using popen, then allowing uni-directional interaction only (e.g., from attacker
to attack target or vice versa, but not both at once). The most complete approach is therefore to use the
low-level fork function to create two processes, and have them communicate via two uni-directional
pipes (one in each direction) constructed using pipe.

Each pipe is represented by a raw file descriptor; this mandates careful use of the unbuffered read and
write functions. The implementation instead converts these to buffered file handles (of type FILE*) using
fdopen, to allow convenient use of fprintf and fscanf.

3. Some hands-on tasks and challenges

To recap, we now have a simulated attack target and attack(er). However, the latter is benign in the sense that
it currently lacks a guessing (or attack) strategy: although it includes the infrastructure required to operate
more generally, it simply sends a single, specific guess to the attack target. As such, the natural next step(s)
would be to extend the attack implementation so it acts maliciously by actively trying to guess (i.e., recover)
the password.

3.1. Build and execute the attack target implementation

1. Fix the working directory:
cd ${ARCHIVE}

2. Build any material related to the attack target implementation:

make all

3. Execute the attack target implementation:
./target

Per Section 2.1, use the terminal to interact with it to 1) provide an attempt/guess as input, then 2) verify
whether the output matches what you expect.

3.2. Build and execute the attack implementation

1. Fix the working directory:
cd ${ARCHIVE}

any material related to the attack implementation:

make all

2. Execute the Python-based8

python3 attack.py ./target

or C-based
./attack ./target

attack implementation, and, given it uses the hard-coded attempt/guess G = “pencil”, verify whether the
output matches what you expect. Change the hard-coded guess the attack makes, and see how doing so
changes said output.

Note that in all cases, use of the file name target with no associated path could cause an error if the current
(working) directory is not in your ${PATH} environment variable: basically, the simulated attacker will be
unable to find and hence unable to execute it (much like executing targetmanually would fail). This issue is
easy to resolve: we simply include a relative or absolute path to the file, e.g., per use of ./target in the above.

8Depending on the platform you have opted to use, satisfying the dependencies required may demand use of a Python virtual
environment; Appendix A offers an overview of how to do so.
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3.3. Implement a naive attack (i.e., using direct input and output only)

1. Obviously the attacker does not know the correct, stored password P itself. However, in order to support
an attack, what reasonable assumptions could/should be made about P?

2. To recover P, both brute-force9 and dictionary-based10 attack strategies seem viable. For each strategy,
extend the starting point provided to do so. Once the attacks work correctly, compare their efficiency by
using big-O notation; are there any other metrics that could usefully characterise the strategies?

3.4. Implement a side-channel attack (i.e., also using the indirect output)

Thus far, the attacks developed only use r, the direct output from the attack target indicating whether or not a
guess G is correct; the next step is to utilise Lambda, the indirect output which models the execution latency.

Looking again at the match function in Figure 1 should highlight some facts which can help. Assuming
r = 0,meaning we know a guess Gwas incorrect, the question to ask is why it was deemed incorrect? Roughly
speaking, a larger Lambda suggests match must have successfully completed more comparisons of either the
lengths of, or characters in the strings. Or, put another way, a larger Lambda suggests G is more similar to P. For
example,

• if Lambda = 0, we know Gwas the incorrect length (because matchmust have returned in the if statement),

• if Lambda = 1, we know Gwas the correct length but P[ 0 ] , G[ 0 ] (because matchmust have returned
in the iteration of the for loop where i = 0), and

• if Lambda = 2, we know Gwas the correct length and P[ 0 ] = G[ 0 ] (because matchmust have returned
in the iteration of the for loop where i = 1).

Simply put, observing how Lambda offers information about where and how to change G in order to guess P
more efficiently.

1. Extend your brute-force attack implementation to capitalise on the indirect output Lambda leaked by the
attack target. A sensible approach is to realise the new, side-channel attack using two steps: 1) recover the
length of, i.e., number of characters in, P, then 2) work character-by-character to recover P itself. Again
using big-O notation, compare this attack strategy with those from above (i.e., brute-force and dictionary
attacks).

2. Within the majority of the above, there is an (implicit) assumption that the attack target implements match
as described. In reality, however, this may not be reasonable. If/when an attack is known, it would be
more reasonable to assume the implementation is altered to prevent (or at least mitigate) it; this would
normally be termed a countermeasure.

What countermeasures might be implemented in this example? Can you alter the implementation in
Figure 1 to realise one such instance? How robust are the countermeasures identified: could one alter the
attack strategy to bypass the countermeasure, for example?

9http://en.wikipedia.org/wiki/Brute-force_attack
10http://en.wikipedia.org/wiki/Dictionary_attack

git # 28798295 @ 2024-01-17 8

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://en.wikipedia.org/wiki/Brute-force_attack
http://en.wikipedia.org/wiki/Dictionary_attack


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A Using a Python virtual environment

As alluded to by use of “dependency hell”11 as a colloquialism, management of software dependencies can
represent a significant and, at times, frustrating challenge. Set within the context of Python, the concept of a
virtual environment specifically attempts to address this challenge. Working in combination with an associated
package manager12, a virtual environment is a self-contained directory structure into which packages beyond
the standard library can be installed. This, for example, avoids the need for their centralised installation (which
will often require a higher, e.g., super-user13 privilege level): the entire mechanism can be user-managed.

Use of virtual environments does not solve every problem, as alluded to by the cartoon above; if you opt to
work using a unit-specific Vagrant box then you may not even have to use them, because relevant packages are
often installed centrally as part of the provisioning step. However, particularly if you opt to work using UoB-
managed14 equipment, virtual environments can offer an important solution you will need to make use of. The
Python documentation15 itself contains an accessible overview, but the general workflow can be summarised
as follows:

1. Store the virtual environment path in an environment variable, so it can be referenced easily later:

export VENV="${PWD}/venv"

2. Initialise the virtual environment:
python3 -m venv ${VENV}

3. Activate the virtual environment:

source ${VENV}/bin/activate

While the virtual environment is active, implying use of packages installed locally within it rather than
some centralised installation, the indicator (venv) is normally included as part of the shell prompt.

4. Install packages in the virtual environment, e.g.,

python3 -m pip install pycryptodomex

5. Use the virtual environment somehow.
1http://xkcd.com/1987

11http://en.wikipedia.org/wiki/Dependency_hell
12See, e.g., https://en.wikipedia.org/wiki/Pip_(package_manager)
13https://en.wikipedia.org/wiki/Superuser
14Previously, IT Services centrally installed various packages on the workstations in, e.g., MVB Linux lab(s). (e.g., MVB-1.15 or MVB-

2.11). Over time, doing so on a per-unit basis become difficult to manage; this fact led to a shift of policy, meaning use of virtual
environments as the default.

15See, e.g., https://docs.python.org/3/tutorial/venv.html
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6. Deactivate the virtual environment:
deactivate

Note that the virtual environment itself is persistent (in ${VENV}), but one would need to reactivate it when
using another BASH shell (or prompt, e.g., a terminal window).
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