
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native appa available for Android and iOS, or

2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-
based unit portal.

• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are
managed by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a
workstation that fails to boot, an error when you try to use some software, or you just cannot log into
your account), they can help: you can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The worksheet is written assuming you work in the lab. using supported UoB-managed equipment. If you
need or prefer to use your own equipment, however, there are various unsupportedb alternatives available:
for example, you could a) manually install any software dependencies yourself, or b) use the unit-specific
Vagrantc box by following instructions at

http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md

• The purpose of the worksheet is to provide a) a tutorial-style introduction to selected technologies or
concepts, and/or b) a means to explore them via hands-on tasks and challenges. Note that the worksheet
is not assessed at all: if you are confident that you already understand the content, there is no problem
with nor penalty for totally ignoring it.

• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these
include both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit
portal) instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no

guarantees about nor support for their use will be offered.
chttp://www.vagrantup.com

git # 6c9440c0 @ 2024-02-06 1

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
http://www.vagrantup.com

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS30048 lab. worksheet #3

Before you start work, download (and, if need be, unarchivea) the file

http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-3.tar.gz

somewhere secureb in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows.

aFor example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-3.tar.gz in a terminal window, 2) use ark directly:
use the Activities desktop menu item, search for and execute ark, use the Archive→Openmenu item to open lab-3.tar.gz, then extract
the contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin,
right-click on lab-3.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

1. Introduction

Efficient implementation of modular multi-precision integer arithmetic, i.e., arithmetic in ZN for some N, is
a fundamental requirement for many asymmetric cryptosystems. Concrete examples include RSA, where
N = p · q is a product of two primes, and ElGamal, and ECC, where N is itself a prime (so formally we instead
write Fp, where p = N). As a result, cryptographic software libraries will usually include an entire suite of
functionality, i.e., data structures and algorithms, which delivers an implementation of the required arithmetic.
GNU Multiple Precision Arithmetic Library (GMP) is arguably the de facto standard example of such a library,
which offers an highly optimised and so efficient option across a range of platforms.

The goal of this worksheet is to use GMP as a means of exploring 1) the theory underlying multi-precision
integer arithmetic, and 2) the practical implementation of that theory, and application within the context of
RSA. The content offers a step-by-step introduction to the library, and, although it cannot and will not cover
every feature, it should equip you with a starting point that can be extended to suit.

2. GMP in theory: improve your understanding

Keeping in mind that it covers the latest version (and so may not exactly match the version you are using), the
GMP documentation [3] available online at

http://gmplib.org/manual

acts as a definitive reference. Read [3, Section 3] before continuing: this summarises a range of information
about 1) how GMP is used and implemented internally, and, importantly, 2) why GMP makes specific decisions
within said implementation. Beyond this, the following presents selected, pertinent points by relating them to
their introduction within the lecture(s):

• mp_limb_t is a type used to represent base-b digits (or limbs); the value of b depends on the GMP
installation (since it can support the best choice for the platform), but the constant GMP_LIMB_BITS tells
you the w for which b = 2w.

• The data structures and algorithms used by GMP are similar to those presented in the lecture(s):

– Lower-level functions starting with the prefix mpn are used to operate on representations of unsigned
integers (i.e., elements of N). Said representations could be described as raw arrays of limbs; the
array length must be managed manually by the programmer [3, Section 8] offers a complete overview.

– Higher-level functions starting with the prefix mpz are used to operate on representations of signed
integers (i.e., elements of Z). Said representations could be described as structured arrays of limbs,
encapsulated in the mpz_t; the array length is managed automatically by GMP. [3, Section 5] offers
a complete overview.

• Unlike the lecture(s), however, where the mpz_t data structure presented included an array of fixed size,
instances of the GMP mpz_t data structure allow said array to grow dynamically. Although this feature
is managed automatically by GMP, it demands the programmer carefully use mpz_init to initialise each
instance of mpz_t before (the first) use, the use mpz_clear to finalise each instance of mpz_t after (the last)
use.

git # 6c9440c0 @ 2024-02-06 2

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-3.tar.gz
http://gmplib.org/manual

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

8 #ifndef __HELLOWORLD_GMP_H
9 #define __HELLOWORLD_GMP_H

10
11 #include <stdio.h>
12 #include <stdlib.h>
13
14 #include <gmp.h>
15
16 #endif

(a) ${ARCHIVE}/helloworld_gmp.h

8 #ifndef __HELLOWORLD_LIBC_H
9 #define __HELLOWORLD_LIBC_H

10
11 #include <stdio.h>
12 #include <stdlib.h>
13
14
15
16 #endif

(b) ${ARCHIVE}/helloworld_libc.h

8 #include "helloworld_gmp.h"
9

10 int main(int argc, char* argv[]) {
11 mpz_t r, x, y;
12
13 mpz_init(r);
14 mpz_init(x);
15 mpz_init(y);
16
17 if(1 != gmp_scanf("%Zd", x)) {
18 abort();
19 }
20 if(1 != gmp_scanf("%Zd", y)) {
21 abort();
22 }
23
24 mpz_add(r, x, y);
25
26 gmp_printf("%Zd\n", r);
27
28 mpz_clear(r);
29 mpz_clear(x);
30 mpz_clear(y);
31
32 return 0;
33 }

(c) ${ARCHIVE}/helloworld_gmp.c

8 #include "helloworld_libc.h"
9

10 int main(int argc, char* argv[]) {
11 int r, x, y;
12
13
14
15
16
17 if(1 != scanf("%d", &x)) {
18 abort();
19 }
20 if(1 != scanf("%d", &y)) {
21 abort();
22 }
23
24 r = x + y;
25
26 printf("%d\n", r);
27
28
29
30
31
32 return 0;
33 }

(d) ${ARCHIVE}/helloworld_libc.c

Figure 1: Source code for a GMP-based “hello world” program (left), and the libc-based equivalent (right).

• The mpz_size can be used to compute the number of limbs used by an instance of mpz_t; the i-th such
limb can be accessed using mpz_getlimbn. You can also access the limbs directly, although this needs
care: if you need to do so, a cleaner though less efficient approach might be to use mpz_import to convert
an array of limbs into an instance of mpz_t, or mpz_export to convert an instance of mpz_t into an array
of limbs.

• GMP includes a variety of functions you can use to read and write input and output. Perhaps the most
useful are gmp_scanf and gmp_printf, which act like the C scanf and printf functions except they
support a range of extended data types and hence format specifiers. [3, Sections 10 and 11] offer a
complete overview.

3. GMP in practice: use your understanding

The goal of this Section is to translate theory into practice: it attempts to offer a (limited) introduction to
how 1) how GMP is used (from an external perspective), plus 2) how GMP is implemented (from an internal
perspective), via two (practical) examples. Both aspects support Section 4, which presents a set of associated
tasks.

3.1. Example #1: a GMP-based “hello world”

Figure 1 includes minimal GMP-based program: the goal is to 1) demonstrate central differences versus a non-
GMP alternative written in vanilla C, and 2) act as a starting point (or template) for later, more complicated
tasks. Rather than write “hello world”1 to the terminal as is traditional, it instead computes a basic operation
by initially reading two integers x and y from stdin, then writing their sum r = x+ y to stdout. The Figure in
fact captures two versions of the program side-by-side:

1http://en.wikipedia.org/wiki/"Hello,_World!"_program

git # 6c9440c0 @ 2024-02-06 3

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://en.wikipedia.org/wiki/"Hello,_World!"_program

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

1. the left-hand version uses GMP to support multi-precision r, x and y, whereas

2. the right-hand version represents a non-GMP analogue that only supports single-precision versions of
the same variables (using vanilla C).

To use the left-hand version, clearly Figure 1a must include gmp.h. Beyond this, we focus on differences in
the two source files captured in Figure 1c and Figure 1d (the latter of which has been artificially spaced and
indented so as to highlight said differences):

• In the left-hand version (Line #11), the type of r, x and y is mpz_t (meaning multi-precision integer); in
the right-hand version their type is int (meaning single-precision, typically 32- or 64-bit integer).

• In the left-hand version (Lines #13 to #15), before we start using r, x and y they must be initialised by
using mpz_init; in the right-hand version this clearly is unnecessary.

• In the left-hand version (Lines #17 to #22), we read x and y from stdin by using gmp_scanf with the
format string %Zd (to specify multi-precision, decimal format); in the right-hand version we use scanf as
normal.

• In the left-hand version (Line #24), we add x and y to form r by using the mpz_add function; in the
right-hand version we use the + operator as normal.

• In the left-hand version (Line #26), we write r to stdout by using gmp_printfwith the format string %Zd
(to specify multi-precision, decimal format); in the right-hand version we use printf as normal.

• In the left-hand version (Lines #28 to #30), after we finish using r, x and y they must be finalised by using
mpz_clear; in the right-hand version this clearly is unnecessary.

Assuming there is an installation2 of GMP available, compilation should be trivial: you simply add -lgmp to
the end of your normal GCC-based build command.

3.2. Example #2: dissecting a GMP mpz_t instance

Recall from the lecture(s) that to represent a multi-precision integer x, we use a base-b expansion

x̂ = ⟨x̂0, x̂1, . . . , x̂n−1⟩

7→ x

= ±

n−1∑
i=0

x̂i · bi

where each x̂i is one of n digits taken from the digit set X = {0, . . . , b − 1}. The choice of b is dictated by the
platform: given a processor whose word size is w = 64 bits for example, we opt for b = 2w = 264 to ensure
each x̂i is word- and hence register-sized, and thus can be operated on by using native, hardware supported
arithmetic.

How does this theory translate into practice? Even given the lecture(s), you might not believe GMP actually
does this! We can demonstrate it does, however, by dissecting an instance of the mpz_t structure: by looking
inside the structure, we can inspect the actual representation used by GMP and show it matches the above.
Figure 2 shows two programs that do this in different ways. Both read a multi-precision integer x from stdin,
then print each limb within the resulting representation. However,

1. the left-hand version uses the function mpz_export to export the limbs into an array called t (the various
constants instruct it to use little-endian ordering), while

2. the right-hand version directly inspects fields within x, voiding any sort of abstraction offered by GMP.

For this task, one could even consider a version half-way between the two, by using the functions mpz_size
and mpz_getlimbn in place of direct access to _mp_size and _mp_d. Either way, these versions both produce
the same result: given the (decimal) input

x = 1234567890123456789012345678901234567890
2GMP is a standard package on most distributions of Linux, but may require installation on Windows for example. It can often be useful

to verify that you linked against the version of GMP you intended to: note that gmp_version captures a human-readable version string,
so printf("%sn", gmp_version);will print the GMP version to stdout.

git # 6c9440c0 @ 2024-02-06 4

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

8 #ifndef __DISSECT_GMP_EXPORT_H
9 #define __DISSECT_GMP_EXPORT_H

10
11 #include <stdio.h>
12 #include <stdlib.h>
13
14 #include <gmp.h>
15
16 #endif

(a) ${ARCHIVE}/dissect_gmp_export.h

8 #ifndef __DISSECT_GMP_STRUCT_H
9 #define __DISSECT_GMP_STRUCT_H

10
11 #include <stdio.h>
12 #include <stdlib.h>
13
14 #include <gmp.h>
15
16 #endif

(b) ${ARCHIVE}/dissect_gmp_struct.h

8 #include "dissect_gmp_export.h"
9

10 int main(int argc, char* argv[]) {
11 mpz_t x;
12
13 mpz_init(x);
14
15 if(1 != gmp_scanf("%Zd", x)) {
16 abort();
17 }
18
19 size_t n = mpz_size(x);
20
21 mp_limb_t t[n];
22
23 mpz_export(t, NULL, -1, sizeof(mp_limb_t), -1, 0, x);
24
25 for(int i = 0; i < n; i++) {
26 if(i != 0) {
27 gmp_printf("+");
28 }
29
30 gmp_printf("%llu*(2^(64))^(%d)", t[i], i);
31 }
32
33 gmp_printf("\n");
34
35 mpz_clear(x);
36
37 return 0;
38 }

(c) ${ARCHIVE}/dissect_gmp_export.c

8 #include "dissect_gmp_struct.h"
9

10 int main(int argc, char* argv[]) {
11 mpz_t x;
12
13 mpz_init(x);
14
15 if(1 != gmp_scanf("%Zd", x)) {
16 abort();
17 }
18
19 size_t n = abs(x->_mp_size);
20
21 mp_limb_t* t = x->_mp_d;
22
23
24
25 for(int i = 0; i < n; i++) {
26 if(i != 0) {
27 gmp_printf("+");
28 }
29
30 gmp_printf("%llu*(2^(64))^(%d)", t[i], i);
31 }
32
33 gmp_printf("\n");
34
35 mpz_clear(x);
36
37 return 0;
38 }

(d) ${ARCHIVE}/dissect_gmp_struct.c

Figure 2: Source code for two GMP-based programs that illustrate how multi-precision integers are represented (as
instances of mpz_t).

git # 6c9440c0 @ 2024-02-06 5

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

say, both form an x represented as a base-264 sequence of limbs

x̂ = ⟨12446928571455179474, 11585827206506214328, 3⟩.

Why does this make sense? Clearly, said representation means

⟨12446928571455179474, 11585827206506214328, 3⟩(264)

7→ 12446928571455179474 · (264)0

+ 11585827206506214328 · (264)1

+ 3 · (264)2

= 12446928571455179474 · 1
+ 11585827206506214328 · 18446744073709551616
+ 3 · 340282366920938463463374607431768211456

= 12446928571455179474
+ 213720789360641398609774928034474754048
+ 1020847100762815390390123822295304634368

= 1234567890123456789012345678901234567890

so we are representing the correct value.

4. Some hands-on tasks and challenges

4.1. Build, execute, and experiment with example #1

Focusing on Section 3.1, and so Figure 1:

1. Fix the working directory:
cd ${ARCHIVE}

2. Build the source code:
make all

3. Execute the left- or right-hand version of the example via

./helloworld_gmp

or
./helloworld_libc

typing input into the terminal, and verifying that the associated output is as expected.

4. Perform some experiments with, and/or make alterations to, the example:

(a) Currently the example computes the sum of x and y: investigate, and make use of some other
arithmetic functions available in GMP, e.g., mpz_sub or mpz_mul.

(b) Identify the limit(s) where the values of x and y will produce the correct result in the left-hand,
GMP-based version but the incorrect result in the right-hand, libc-based version. Can you explain
these limits in a precise way, framed against the representations for x and y used by the two versions?

4.2. Build, execute, and experiment with example #2

Focusing on Section 3.2, and so Figure 2:

1. Fix the working directory:
cd ${ARCHIVE}

2. Build the source code:
make all

git # 6c9440c0 @ 2024-02-06 6

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

3. Execute the left- or right-hand version of the example via

./dissect_gmp_export

or
./dissect_gmp_struct

typing input into the terminal, and verifying the associated output is as expected.

4. Perform some experiments with and/or make alterations to the example:

(a) Investigate low(er)-level functions provided by GMP, which are prefixed with mpn: these operate
directly on sequences of limbs. For example, can you reproduce the behaviour of the other, “hello
world” example using mpn_add?

(b) Consider x, the instance of mpz_t that uses the internal sequence of limbs x->_mp_d to represent an
integer value; one could imagine implementing a high(er)-level function by directly manipulating
said sequence of limbs, and thus the associated representation and value. For example, can you write
a function (say mpz_inc) that increments any such x without using mpn_add, mpz_add, or similar?

4.3. Develop your own GMP-supported RSA implementation

1. Recall that, for a security parameter λ, RSA key generation can be summarised as follows:

1 select random λ
2 -bit primes p and q

2 compute N = p · q
3 compute Φ(N) = (p − 1) · (q − 1)
4 select random e ∈ Z∗N such that gcd(e,Φ(N)) = 1
5 compute d = e−1 (mod Φ(N))
6 return public key (N, e) and private key (N, d)

Given that

• [3, Section 5.13] describes mpz_urandomm for generation of random integers (within a given range),
and

• [3, Section 5.9] includes mpz_probab_prime_p for primality testing, mpz_gcd for computation of
GCD, and mpz_invert for computation of modular inversion,

implement a function

void rsa_keygen(mpz_t N, mpz_t e, mpz_t d, int lambda)

that realises said key generation process.

2. Recall that modular exponentiation forms the basis for both RSA encryption, i.e.,

c = me (mod N),

and decryption, i.e.,

m = cd (mod N).

Given that

• [3, Section 5.15] describes mpz_sizeinbase which can be used to compute the number of bits used
within the representation of a given integer,

• [3, Section 5.11] describes mpz_tstbitwhich can be used to inspect the i-th such bit,

• [3, Section 5.7] describes mpz_mod for computation of modular reduction, such that a modular
multiplication can be computed by composition of mpz_mul and mpz_mod,

• [3, Section 5.7] describes mpz_powm for computation of modular exponentiation, which can be used
as a known-good reference implementation to test against,

git # 6c9440c0 @ 2024-02-06 7

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

implement a function

void powm(mpz_t r, mpz_t x, mpz_t y, mpz_t N)

that realises the 1Exp-L2R-Binary (or binary, left-to-right single-exponentiation) algorithm presented in
the lecture(s), and thereby

void rsa_enc(mpz_t c, mpz_t m, mpz_t e, mpz_t N)

and
void rsa_dec(mpz_t m, mpz_t c, mpz_t d, mpz_t N)

for RSA encryption and decryption.

4.4. Extend your own GMP-supported RSA implementation

Explore options for improving the efficiency of your implementation, e.g.,

1. replace your implementations of rsa_keygen and rsa_enc with alternatives based on use of a “small”
encryption exponent,

2. replace your implementations of rsa_keygen and rsa_decwith alternatives based on use of the CRT (see,
e.g., [2]),

3. replace your implementation of powm with an alternative based on use of Montgomery multiplication
(see, e.g., [1]),

4. replace your implementation of powm with an alternative based on use of pre-computation, e.g., the
1Exp-L2R-FixedWindow (or windowed, left-to-right single-exponentiation) algorithm presented in the
lecture(s).

References

[1] P.L. Montgomery. “Modular multiplication without trial division”. In: Mathematics of Computation 44.170
(1985), pp. 519–521 (see p. 8).

[2] J-J. Quisquater and C. Couvreur. “Fast decipherment algorithm for RSA public-key cryptosystem”. In:
IEE Electronics Letters 18.21 (1982), pp. 905–907 (see p. 8).

[3] The GNU Multiple Precision (GMP) Arithmetic Library. url: http://gmplib.org/manual (see pp. 2, 3, 7).

git # 6c9440c0 @ 2024-02-06 8

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://gmplib.org/manual

	Introduction
	GMP in theory: improve your understanding
	GMP in practice: use your understanding
	Example #1: a GMP-based ``hello world''
	Example #2: dissecting a GMP [C]mpzt instance

	Some hands-on tasks and challenges
	Build, execute, and experiment with example #1
	Build, execute, and experiment with example #2
	Develop your own GMP-supported RSA implementation
	Extend your own GMP-supported RSA implementation

