
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native appa available for Android and iOS, or

2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-
based unit portal.

• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are
managed by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a
workstation that fails to boot, an error when you try to use some software, or you just cannot log into
your account), they can help: you can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The worksheet is written assuming you work in the lab. using supported UoB-managed equipment. If you
need or prefer to use your own equipment, however, there are various unsupportedb alternatives available:
for example, you could a) manually install any software dependencies yourself, or b) use the unit-specific
Vagrantc box by following instructions at

http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md

• The purpose of the worksheet is to provide a) a tutorial-style introduction to selected technologies or
concepts, and/or b) a means to explore them via hands-on tasks and challenges. Note that the worksheet
is not assessed at all: if you are confident that you already understand the content, there is no problem
with nor penalty for totally ignoring it.

• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these
include both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit
portal) instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no

guarantees about nor support for their use will be offered.
chttp://www.vagrantup.com

git # 28798295 @ 2024-01-17 1

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
http://www.github.com/danpage/COMS30048/blob/COMS30048_2023/vagrant/README.md
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
http://www.vagrantup.com

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS30048 lab. worksheet #2

Before you start work, download (and, if need be, unarchivea) the file

http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-2.tar.gz

somewhere secureb in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows.

aFor example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-2.tar.gz in a terminal window, 2) use ark directly:
use the Activities desktop menu item, search for and execute ark, use the Archive→Openmenu item to open lab-2.tar.gz, then extract
the contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin,
right-click on lab-2.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

1. Introduction

The AES1 block cipher represents an important, standardised component within a wide range of use-cases. As
a result, cryptographic software libraries will typically include an AES implementation2 that supports multiple
parameter sets (e.g., cipher key size) and/or optimisation goals (e.g., with respect to time or space) stemming
from flexibility afforded by the underlying design. On one hand, using such an implementation as is, i.e., as
a black-box, and so ignoring the internal, implementation detail, can be preferable and indeed advantageous.
On the other hand, however, doing so is not always possible: some example scenarios include where

• an existing implementation is not available for a given platform, e.g., a particular (perhaps niche) micro-
processor, or

• functional or behavioural properties of an existing implementation mean it is not fit for purpose, e.g., is
not efficient enough (in time or space), or lacks countermeasures for a given attack technique.

Even beyond these examples, engaging with the implementation detail can also provide general insight into the
design. The selection3 of the Rijndael design as the AES standard was motivated, in part, by practically-oriented
criteria such as efficiency; design strategies in Rijndael that help satisfy such criteria, while also guaranteeing
resistance against cryptanalysis, are arguably made clearer by studying implementations of it.

Accepting the above premise as true, the goal of this lab. worksheet is to 1) improve your understanding
of AES from a theoretical perspective, so focusing on the underlying design, then 2) switch to a more practical
focus by developing an AES implementation of your own (in a programming language of your choice).

2. AES in theory: improve your understanding

AES is a fairly “clean” design, which combines 1) simple high-level structure based on an SP-network4,
with 2) a close connection to underlying Mathematics at lower-levels. The lecture(s) already provide a fairly
comprehensive overview, but, as an alternative or supplement, you could consider use of other resources such
as

• the FIPS-197 [1] standard

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

• relevant video-based overviews, such as

http://www.youtube.com/channel/UC1usFRN4LCMcfIV7UjHNuQg

that includes block cipher material in

http://www.youtube.com/watch?v=x1v2tX4_dkQ
http://www.youtube.com/watch?v=NHuibtoL_qk
http://www.youtube.com/watch?v=4FBgb2uobWI

and
1http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
2http://en.wikipedia.org/wiki/AES_implementations
3http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
4http://en.wikipedia.org/wiki/Substitution-permutation_network

git # 28798295 @ 2024-01-17 2

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://tinyurl.com/5h3tux8s/csdsp/sheet/lab-2.tar.gz
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
http://www.youtube.com/channel/UC1usFRN4LCMcfIV7UjHNuQg
http://www.youtube.com/watch?v=x1v2tX4_dkQ
http://www.youtube.com/watch?v=NHuibtoL_qk
http://www.youtube.com/watch?v=4FBgb2uobWI
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/AES_implementations
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
http://en.wikipedia.org/wiki/Substitution-permutation_network

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• less formal introductions such as

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

3. AES in practice: use your understanding

The translation of theory into practice (i.e., of the AES design into a working implementation) may initially seem
like a complex, and so daunting challenge. To address it, use of considered (versus ad hoc) a) implementation
strategies and techniques plus b) development best-practices are all vitally important. The goal of this Section is
to summarise these points, highlighting a variety of related decisions and implications: by doing so it supports
Section 4, which presents a set of associated tasks.

3.1. Implementation strategy

At a high level, (at least) three points are useful when forming a remit and strategy for implementation; said
points are somewhat generic, so it is possible they can be applied beyond the context of AES.

1. Follow the standard. Although abused5 in the context of marketing and sales, the phrase “nobody ever
got fired for buying IBM equipment” captures the idea that a so-called safe option (e.g., a respected brand
name) may be preferable even if a valid, technical counterargument (e.g., the alternative is a technically
superior product by an unknown vendor) exists. One could posit a paraphrased alternative “nobody
ever got fired for following the standard” for cryptographic implementation tasks: using FIPS-197 [1] as
a reference for AES is useful, for example, because 1) by definition it can (and so should) be treated as the
definitive specification for an implementation, 2) even if that specification is flawed (e.g., AES turns out
to be insecure) it offers shared risk and liability, 3) it ensures consistency and inter-operability (in terms
of both functionality and communication, e.g., notation) with other implementations.

2. Only implement the functionality you need. To limit the remit of an implementation, it could be
reasonable to simplify the functionality we intend it to offer. For example, we could

(a) support only AES-128 (i.e., a 128-bit key size),

(b) support only encryption (versus decryption) in only ECB (so not, e.g., CBC) mode, and

(c) limit the design space, fixing a platform and so constraints for the implementation: by fixing use of
a constrained platform (e.g., an ARM-based micro-controller), for example, we focus on trade-offs
that favour memory footprint over efficiency.

Of course the resulting implementation might only then be useful in specific (versus general) contexts,
due to various limitations, but 1) this context may be reasonable, meaning the implementation is already
useful, and, even then, 2) it affords a starting point that can later be embellished (e.g., generalised or
extended) to suit.

3. Work step-by-step rather than all-or-nothing. By using the implementation strategy as a guide, we then
decompose the implementation into simpler components. The obvious way to do so is with reference to
Figure 1, which illustrates the AES arithmetic stack: the layered illustration naturally hints at a step-by-
step, bottom-up route toward an implementation.

Next, using the latter points as a guide, we can start to identify both the components (e.g., functions) required,
plus the options available when implementing those components. AES depends fundamentally on F28 , a finite
field of 28 = 256 elements. [1, Section 3 and 4] offers an overview, divided into roughly two themes that mirror
the division between challenges of representation (i.e., data structures) and computation (i.e., algorithms): we
follow a similar approach in summarising pertinent points below.

Representation. In a formal sense, F28 is constructed as F2[x]/p(x), i.e., as a set of binary polynomials modulo
the irreducible polynomial p(x) = x8 + x4 + x3 + x + 1. In practical terms, this means we represent elements of
F28 as sequences of bits: the i-th bit, which can be either 0 or 1, represents the i-th coefficient in an associated
polynomial. Using this as a starting point, and per Figure 1, two requirements can be identified and easily
resolved:

• the lower layers require representation of field elements in F28 ; this is realised using an unsigned 8-bit
integer, or byte, data type (in C, e.g., uint8_t), and

5http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

git # 28798295 @ 2024-01-17 3

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Enc

round
functions

F4×4
28

F28 + S-box

F2

byte or word
operations

Figure 1: The AES (encryption) arithmetic stack.

• the upper layers require representation of F4×4
28 , i.e., (4 × 4)-element state and round key matrices; this is

realised using a 16-element (flat, column-major) array of field elements (in C, e.g., uint8_t s[16] or
analogous pointer uint8_t* s).

Computation. The requirements for computation can be divided in a similar way: per Figure 1, an implemen-
tation of AES is required to perform 1) operations on representations of F28 , i.e., arithmetic in F28 , including
application of the S-box, plus 2) operations on representations of F4×4

28 , e.g., the AES round functions; we
use these components as building blocks, for example to realise the required key expansion and encryption
functionality.

• Certain (arithmetic) operations in F28 are trivial, due to our representation and capabilities of the under-
lying platform. Consider, for example, that for x, y ∈ F28 we have that

x + y ≡ x − y ≡ xi + yi (mod 2) 7→ x ⊕ y.

Put another way, addition (resp. subtraction) in the finite field is equivalent to XOR’ing the representations
together (because XOR acts like a carry-less, 1-bit addition, which matches addition in F2).

• Likewise, the limited range and domain of (arithmetic) operations in F28 suggests potential for pre-
computation: although careful analysis of constraints on memory footprint is important, it is plausible to
(offline) pre-compute a look-up table of results and so avoid (online) computation. The S-box6 is a good
example: this is essentially a function

S-box : F28 → F28 ,

so has 256 possible (8-bit) inputs and 256 possible (8-bit) outputs. As a result, for the overhead of 256B of
memory we can simply look-up results rather than compute them; clearly this will be significantly easier,
and imply lower latency.

• Given the ability to perform operations in F28 , the AES round functions, namely, AddRoundKey, SubBytes,
ShiftRows, and MixColumns, are reasonably simple to implement. Each such function can operate on a
(partially processed) state matrix in-place7, which aligns with the goal of minimising memory footprint.

• Alongside the round functions, computation of round keys (as used by AddRoundKey) from the cipher key
is important. AES-128 requires a total of 11 such round keys, the 0-th instance of which is rk(0) = k, i.e.,
matches the cipher key; each next, (i + 1)-th instance rk(i+1) for 0 < r < 11 is produced as a function of the
previous, i-th instance rk(i). This means each encryption operation can take the cipher key as input, and
evolve it in-place to produce successive round keys; versus the alternative of pre-computing said round
keys, doing so aligns with the goal of minimising memory footprint.

3.2. Test strategy

Beyond implementation per se, the challenges of verification and testing are vitally important. This is true for
(at least) two reasons. First, and more obviously, correctness is an important requirement. This universally

6http://en.wikipedia.org/wiki/Rijndael_S-box
7http://en.wikipedia.org/wiki/In-place_algorithm

git # 28798295 @ 2024-01-17 4

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/In-place_algorithm

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

true, but of specific relevance for security-critical kernels such as AES as used in high-assurance contexts.
Second, and less obviously, however, design and use of an effective test strategy will support more effective
debugging and thus more efficient development cycles. Focusing on testing, a variety of generic strategies
can be considered: although only representative of the much broader discipline8, we present some examples
below. Note that each has positive and negative features, so are most sensible used and combined to suit both
1) the function under test (or being tested), plus 2) the goal and any constraints (e.g., time or space). Also note
that although the descriptions focus on AES encryption as the function under test, this is not a limitation: they
can be (selectively) employed in other cases, such as arithmetic in F28 , as well.

1. Use known-good test vectors. [1, Appendix B] includes a worked example based on the test vector
(k,m, c) where

k = ⟨ 2B, 7E, 15, 16, 28, AE, D2, A6, AB, F7, 15, 88, 09, CF, 4F, 3C ⟩(28)
m = ⟨ 32, 43, F6, A8, 88, 5A, 30, 8D, 31, 31, 98, A2, E0, 37, 07, 34 ⟩(28)
c = ⟨ 39, 25, 84, 1D, 02, DC, 09, FB, DC, 11, 85, 97, 19, 6A, 0B, 32 ⟩(28)

Each such test vector asserts that
AES-128.Enc(k,m) = c

or, conversely,
AES-128.Dec(k, c) = m,

and, given their source, we can be confident these equalities are accepted as correct (i.e., are known-good).

Such test vectors are often provided as part of a design, so that any associated implementation can be
tested. To do so, for each test vector we 1) use the implementation under test to encrypt m (resp. decrypt
c) under k, computing a ciphertext (resp. plaintext) t, then 2) compare the LHS t with the known-good
RHS c (resp. m), e.g.,

t = AES-128.Enc(k,m) ?
= c.

If the LHS and RHS match, we gain confidence that the implementation is correct; if not, we can attempt
to debug it (noting the worked example includes all relevant intermediate values, which can act as further
known-good references). Use of test vectors also has an advantage, in the sense they can be intelligently
selected so as to target some feature; an example might be to satisfy demands on test coverage9 that
would be more difficult within a randomised approach.

2. Use a known-good reference implementation (or oracle). An obvious alternative is to compare the
implementation with some existing alternative; the latter is often termed a reference implementation or
oracle10. A central advantage of doing so is the lack of dependency on (and so need to supply) any
particular test vector(s).

As motivated by Section 1, this approach is made easier by the ubiquity of AES: almost any software
library can act as a viable reference implementation. Denoting the reference implementation by O, the
idea is to test whether

AES-128.Enc(k,m) ?
= O(k,m).

That is, we 1) select random k and m, 2) compute the LHS using the implementation under test, 3) compute
the RHS using the reference implementation, 4) test whether the LHS equals the RHS. Put another way,
the reference implementation could be viewed as generating the known-good c (resp. m) on demand;
although the process differs, we basically generate then use a test vector (k,m, c = O(k,m)).However, note
that versus a fixed, finite number of provided test vectors, this approach can be used to improve our
confidence by simply repeating as many (randomised) iterations as required.

3. Use axiomatic “self-test”. Finally, some functionality affords a form of “self-test” in the sense that the
result can be tested using an axiom (which is assumed correct by definition). Consider the axiom

AES-128.Dec(k,AES-128.Enc(k,m)) ?
= m,

which, intuitively, captures the fact Enc and Dec should act as inverses under k for any “correct” block
cipher. The idea then, is as above: we a) select random k and m, b) compute the LHS using the
implementation under test, c) test whether the LHS equals the RHS.

Again, use of randomised inputs offers an advantage by allowing us to easily improve our confidence.
In addition, this approach allows removal of the dependency on a reference implementation; doing so
could, for example, be useful in supporting the use of online (versus offline) testing. However, as a
counterargument, we now need some additional functionality, i.e., Dec, that we previously did not.

8http://en.wikipedia.org/wiki/Software_testing
9http://en.wikipedia.org/wiki/Code_coverage

10http://en.wikipedia.org/wiki/Oracle_(software_testing)

git # 28798295 @ 2024-01-17 5

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Oracle_(software_testing)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

4. Some hands-on tasks and challenges

4.1. Build, execute, and experiment with an AES reference implementation

The material provided for this lab. worksheet includes a set of examples. Each one uses a different programming
language to perform AES encryption using an associated support library (i.e., AES reference implementation);
each one uses the test vector cited in Section 3.2 as a (limited) way to verify correctness.

1. Fix the working directory:
cd ${ARCHIVE}

2. Build any material related to the example:
make all

3. Execute either the Python-based11

python3 encrypt.py

or the C-based
./encrypt

example, noting that each one uses [1, Appendix B] as a test of correctness.

4.2. Develop your own AES implementation

By using one of the examples from the previous Section as a starting point, this Section tasks you with
development of your own AES implementation. By selecting an example, you clearly select a programming
language as well: although selection of C is assumed, leading to use of C-specific syntax, any selection is
reasonable.

1. Implement and test a function
uint8_t xtimes(uint8_t x)

that computes r = x ⊗F
28

x ≡ x · x(x) (mod p(x)) for x ∈ F28 (i.e., multiplies x by the indeterminate x).

2. Implement and test a function
uint8_t aes_sbox(uint8_t x)

that computes r = S-box(x) for x ∈ F28 (i.e., applies the AES S-box to x).

3. Implement and test a function
uint8_t aes_rcon(int i)

that computes r = xi−1 (mod p(x)) (i.e., computes the i-th round constant).

4. Using [1, Section 5.2] as a guide, implement and test a function

void aes_enc_key_evolve(uint8_t* r, const uint8_t* rk, uint8_t rc)

that takes a current, i-th AES-128 round key matrix rk and a round constant rc as input, and operates on
it in-place to compute a next, (i + 1)-th AES-128 round key matrix as output.

5. Using [1, Section 5.1.1-4] as a guide, implement and test

(a) a function
void aes_enc_rnd_key(uint8_t* s, const uint8_t* rk)

relating to the round function AddRoundKey,

(b) a function
void aes_enc_rnd_sub(uint8_t* s)

relating to the round function SubBytes,

(c) a function
void aes_enc_rnd_row(uint8_t* s)

relating to the round function ShiftRows, and

11Depending on the platform you have opted to use, satisfying the dependencies required may demand use of a Python virtual
environment; Appendix A offers an overview of how to do so.

git # 28798295 @ 2024-01-17 6

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

(d) a function
void aes_enc_rnd_mix(uint8_t* s)

relating to the round function MixColumns.

Each function takes a current, i-th AES-128 state matrix s (plus, in the first case, an AES-128 round key
matrix rk) as input, and operates on it in-place to compute a next, (i+1)-th AES-128 state matrix as output.

6. Using [1, Section 5.1] as a guide, implement and test a function

void aes_enc(uint8_t* c, const uint8_t* m, const uint8_t* k)

that takes an AES-128 plaintext m and AES-128 cipher key k, as input, and computes an AES-128 ciphertext
c as output.

4.3. Extend your own AES implementation

1. This lab. worksheet has focused exclusively on AES encryption, i.e., on computation of

c = AES-128.Enc(k,m).

Although this simplification might seem restrictive, when used in CTR mode [2, Section 6.5], e.g.,

c[i] = m[i] ⊕ AES-128.Enc(k, i)
m[i] = c[i] ⊕ AES-128.Enc(k, i)

it provides the functionality required to both encrypt plaintexts and decrypt ciphertexts.

That said, however, offering standalone decryption functionality is important in other use-cases. To
support doing so, AES decryption is outlined by [1, Section 5.3]: it essentially describes how each
encryption step is inverted. Following a similar, step-by-step approach as for AES encryption in the tasks
above, develop an AES decryption implementation.

2. This lab. worksheet has focused exclusively on one platform, and one implementation strategy for AES on
it. For a different platform or use-cases, however, such a focus may be inappropriate: an obvious example
is whenever a trade-off that favours efficiency over memory footprint is required, e.g., for applications
such as encryption of network traffic.

With this in mind, [1, Section 6.4] offers some coverage of other implementation strategies; it includes
use of T-tables, for example, as was explained in the lecture(s). Using your implementation in the tasks
above as a starting point, try to develop an alternative based on T-tables. Compare the two strategies
with respect to the trade-off(s) made: concretely, 1) how much more memory does the alternative use,
and 2) how much lower is the resulting execution latency?

References

[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST) Federal In-
formation Processing Standard (FIPS) 197 (update 1). 2023. url: http://csrc.nist.gov (see pp. 2, 3,
5–7).

[2] Recommendation for Block Cipher Modes of Operation: Methods and Techniques. National Institute of Standards
and Technology (NIST) Special Publication 800-38A. 2001. url: http://csrc.nist.gov (see p. 7).

git # 28798295 @ 2024-01-17 7

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://csrc.nist.gov
http://csrc.nist.gov

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A Using a Python virtual environment

As alluded to by use of “dependency hell”12 as a colloquialism, management of software dependencies can
represent a significant and, at times, frustrating challenge. Set within the context of Python, the concept of a
virtual environment specifically attempts to address this challenge. Working in combination with an associated
package manager13, a virtual environment is a self-contained directory structure into which packages beyond
the standard library can be installed. This, for example, avoids the need for their centralised installation (which
will often require a higher, e.g., super-user14 privilege level): the entire mechanism can be user-managed.

Use of virtual environments does not solve every problem, as alluded to by the cartoon above; if you opt to
work using a unit-specific Vagrant box then you may not even have to use them, because relevant packages are
often installed centrally as part of the provisioning step. However, particularly if you opt to work using UoB-
managed15 equipment, virtual environments can offer an important solution you will need to make use of. The
Python documentation16 itself contains an accessible overview, but the general workflow can be summarised
as follows:

1. Store the virtual environment path in an environment variable, so it can be referenced easily later:

export VENV="${PWD}/venv"

2. Initialise the virtual environment:
python3 -m venv ${VENV}

3. Activate the virtual environment:

source ${VENV}/bin/activate

While the virtual environment is active, implying use of packages installed locally within it rather than
some centralised installation, the indicator (venv) is normally included as part of the shell prompt.

4. Install packages in the virtual environment, e.g.,

python3 -m pip install pycryptodomex

5. Use the virtual environment somehow.
1http://xkcd.com/1987

12http://en.wikipedia.org/wiki/Dependency_hell
13See, e.g., https://en.wikipedia.org/wiki/Pip_(package_manager)
14https://en.wikipedia.org/wiki/Superuser
15Previously, IT Services centrally installed various packages on the workstations in, e.g., MVB Linux lab(s). (e.g., MVB-1.15 or MVB-

2.11). Over time, doing so on a per-unit basis become difficult to manage; this fact led to a shift of policy, meaning use of virtual
environments as the default.

16See, e.g., https://docs.python.org/3/tutorial/venv.html

git # 28798295 @ 2024-01-17 8

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk
http://xkcd.com/1987
http://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Superuser
https://docs.python.org/3/tutorial/venv.html

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

6. Deactivate the virtual environment:
deactivate

Note that the virtual environment itself is persistent (in ${VENV}), but one would need to reactivate it when
using another BASH shell (or prompt, e.g., a terminal window).

git # 28798295 @ 2024-01-17 9

mailto:csdsp@bristol.ac.uk
http://www.cs.bris.ac.uk
http://www.bris.ac.uk

	Introduction
	AES in theory: improve your understanding
	AES in practice: use your understanding
	Implementation strategy
	Test strategy

	Some hands-on tasks and challenges
	Build, execute, and experiment with an AES reference implementation
	Develop your own AES implementation
	Extend your own AES implementation

	Using a Python virtual environment

