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Applied Cryptology (COMS30048)

Assessed coursework assignment

AttackHW

Note that:

1. This coursework assignment has a 100 percent weighting, i.e., it represents 100 percent of
Credit Points (CPs) associated with COMS30048, and is assessed on an individual basis. The
submission deadline is 02/05/24.

2. Before you start work, ensure you are aware of and/or adhere to various regulationsa which
govern coursework assessments: pertinant examples include those related to academic in-
tegrity (see, e.g., Sec. 3) and submission (see, e.g., Sec. 12).

3. There are numerous support resources available, for example:

• via the unit forum, where you get help and feedback via n-to-m, collective discussion,

• via the lab. slot(s), where you get help and feedback via 1-to-1, personal discussion, or

• via the lecturer(s) responsible for this coursework assignment: although the above are
preferable, you can make contact in-person or online (e.g., via email).

ahttp://www.bristol.ac.uk/academic-quality/assessment/codeonline.html
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1 Introduction

There are two main categories of cryptanalytic attack (which can overlap to some extent): they either focus on the
underlying design (or theory), or on the properties of a resulting implementation. This assignment is concerned
with the second category. The overarching goal is to gain a deeper understanding of a) implementation
challenges for given cryptographic primitives, b) attacks against said implementations, and c) countermeasures
against said attacks, all through applied research and development tasks set within a motivating, example
scenario.

2 Terms and conditions

• The assignment description may refer to the ASCII text file question.txt, or more generally “the mark-
sheet”: download this file from

http://tinyurl.com/5h3tux8s/csdsp/cw/AttackHW/question.txt

then complete and include it in your submission. This is important, in the sense that 1) it offers you
clarity with respect to the marking process, e.g., via a marking scheme, and 2) it offers us useful (meta-
)information about your solution. Keep in mind that if separate assessment units exist, they may have
different assessment criteria and so marking scheme.

• Certain aspects of the assignment have a (potentially large) design space of possible approaches. Where
there is some debate about the correct or “best” approach, the assignment demands you make an informed
decision yourself: it is therefore not (purely) a programming exercise st. blindly implementing an approach
will be enough. Such decisions should ideally be based on a reasoned argument formed via your
own background research (versus relying exclusively on the teaching material provided), and clearly
documented (e.g., using the marksheet).

• The assignment design includes some heavily supported, closed initial stages which reflect a lower mark,
and some mostly unsupported, open later stages which reflects a higher mark. This suggests the marking
scale is non-linear: it is clearly easier to obtain X marks in the initial stages than in the final stage. The
term open (resp. closed) should be understood as meaning flexibility with respect to options for work, not
non-specificity with respect to workload: each stage has a clear success criteria that limit the functionality
you implement, meaning you can (and should) stop work once they have been satisfied.

• As was outlined in the lab. worksheets, the SCALE kits are only available in the lab. slots. Our rationale
is that doing so acts to control the amount of time you invest in the assignment, and so your overall
workload. Please keep this in mind: this approach may not suit everyone, but is carefully considered and
well intended.

• Where a choice is possible, which is not always the case, you can select the programming language used
to implement a given aspect of the assignment. Viable examples include C and Python. Use of (correctly
cited) third-party libraries is allowed for cases that do not conflict with the associated ILOs. Viable
examples include OpenSSL for C, and the pycryptodome package for Python.

• Include a set of instructions that clearly describe how to compile and execute your solution. The ideal
approach would be to a) submit (or alter) a Makefile, and/or b) use the marksheet to provide written
instructions.

• To make the marking process easier, your solution should only write error messages to stderr (or
equivalent). In addition, the only input read from stdin (resp. output written to stdout, or equivalents)
should be that specified by the assignment description.

• You should submit your solution, into the correct component, via

http://www.ole.bris.ac.uk

Include any a) source code files, b) text or PDF files, (e.g., documentation) and c) auxiliary files (e.g.,
example output), either as required or that you feel are relevant. Keep in mind that if separate teaching
and assessment units exist, you should submit via the latter not the former.

• To make the submission process easier, the recommended approach is to develop your solution within
the same directory structure as the material provided. This will allow you to first create then submit a
single archive (e.g., solution.zip using zip, or solution.tar.gz using tar and gzip) of your entire
solution, rather than multiple separate files.
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Figure 1: A diagrammatic description of the material in ${USER}.tar.gz.

• Implementations produced as part of the assignment will be marked using a platform equivalent to the
MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11). As such, they must compile, execute, and be thoroughly
tested using both the operating system and development tool-chain versions available by default.

• Although you can definitely expect to receive partial marks for a partial solution, it will be marked as
is. This means a) there will be no effort to enable either optional or commented functionality (e.g.,
by uncommenting it, or via specification of compile-time or run-time parameters), and b) submitting
multiple variant solutions is strongly discouraged, but would be dealt with by considering the variant
which yields the highest single mark.

3 Description

3.1 Material

Selected material, personalised on a per student basis, is provided for you to use. Assuming ${USER} is used
to represent your 7-digit UoB student number, download1 and unarchive the file

http://tinyurl.com/5h3tux8s/csdsp/cw/AttackHW/${USER}.tar.gz

somewhere secure in your file system: from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content illustrated by Figure 1.

• ${ARCHIVE}/board/target.[ch] provides a skeleton attack target implementation (i.e., some source
code, written in C), which relates to stage 1.

• ${ARCHIVE}/scope/attack.py; provides a skeleton attack implementation (i.e., some source code, writ-
ten in Python), which relates to stage 2.

• ${ARCHIVE}/board/${USER}.elf (plus${ARCHIVE}/board/${USER}.bin and${ARCHIVE}/board/${USER}.hex,
which are derived from it) provides a compiled attack target implementation (i.e., an executable for a
SCALE development board), which relates to stage 2; it is expanded upon in Appendix A.

• ${ARCHIVE}/scope/${USER}.elf provides a compiled attack implementation (i.e., an executable for a
control workstation), which relates to stages 2 and 3; it is expanded upon in Appendix B. The executable
was produced (i.e., is the result of compilation) on a platform equivalent to those in the MVB Linux
lab(s). (e.g., MVB-1.15 or MVB-2.11). As such, it is only guaranteed to work on either the same or at least
a compatible platform, and, even then, only once the file has appropriate permissions set using chmod.

• ${ARCHIVE}/board/Makefile and ${ARCHIVE}/scope/Makefile are fairly self explanatory, acting as
analogues to the files encountered in lab. worksheet #1.1 and #1.2. The former, for example, includes a
build system for the skeleton attack target implementation.

1If your 7-digit UoB student numberis 0123456, for example, the corresponding URL would be http://tinyurl.com/5h3tux8s/csdsp/
cw/AttackHW/0123456.tar.gz. If you have a problem downloading or unarchiving this file (e.g., you find it is missing, which can occur
if you register late for the unit for example), it is vital you contact the lecturer responsible for the assignment immediately.
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(a) A more abstract description of the scenario.
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(b) A less abstract description of the scenario.

Figure 2: A diagrammatic description of the scenario considered.

3.2 Overview
Consider an example scenario, where you join the development team for a device T ; this scenario is described
diagrammatically in Figure 2a. The device is design to act as a co-processor which supports a range of security-
related functionality. For example, using a standard protocol it includes support for 1) secure key generation
and storage, and 2) off-load of cryptographic operations. This allows it to support some host systemH j, which
engages with TLS-based communication across the Internet, with a remote systemHi.

To minimise cost, no bespoke hardware is used: all the functionality is realised in software, or rather
firmware, as executed by the integrated micro-controller. For convenience, we useT to denote the whole device
from here on, i.e., the hardware plus software, including firmware, executed on it. The development of an
initial prototype has just begun, with a focus on delivery of functionality related to AES-128. This means the
prototype T 1) has non-volatile, secure storage for an AES-128 cipher key k̂, and 2) can compute AES-128
encryption operations using it. That is, in each interaction with it, a given user U can send an AES-128
plaintext to T ; the device encrypts that plaintext under k̂, and sends back the corresponding ciphertext. Due
to the context in which T will be deployed, there is some concern about the threat of implementation attacks
against it; DPA-like attacks have been specifically highlighted as a threat. You have been tasked with ensuring
the AES-128 implementation used is secure against such attacks, while also being efficient enough.

This assignment models aspects of the scenario outlined above, and, in particular, a case described by
Figure 2b in whichU has physical access to T . Replicating broader challenges with respect to cryptographic
engineering, and using the SCALE kit (per lab. worksheets #1.1 and #1.2) as a vehicle to do so, it tasks you
with developing a) an attack target implementation (i.e., an AES-128 implementation) modelling the firmware
for T , executed on a SCALE development board, and b) an attack implementation modelling a malicious,
or adversarial U, executed on a control workstation (using a PicoScope 2206B to acquire traces of power
consumption from a SCALE development board). The protocol used to communication between the modelled
U and T is detailed in Appendix C.

3.3 Detail
Stage 1. This stage involves development of an attack target implementation, modellingT per Section 3.2. As a

starting point you must use the skeleton attack target implementation provided. Do not alter the main2

function: instead, produce a solution by implementing a) the placeholder functions octetstr_rd and
octetstr_wr (per lab. worksheet #1.1), and b) the placeholder functions aes and aes_init (per lab.
worksheet #2).

Success criteria. Demonstrate that the attack target implementation is

(a) correct, i.e., given the cipher key k̂ hard-coded in the skeleton, it correctly computes the ciphertext
c = AES.Enc(k̂,m) for a given plaintext m,

(b) efficient, i.e., yields said ciphertext within a 1ms “efficiency budget” (or time limit).

2The main function within the skeleton implements the a) communication protocol and b) trigger signal management, required to
support interaction with the implementation (e.g., within later stages): if you alter it, said interaction may fail. Likewise, it includes a
hard-coded AES-128 key k that differs per student: if you alter it, verifying your implementation works correctly is more difficult.
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Advice. A sensible approach would be to first develop, e.g., an AES-128 implementation, indepen-
dently and then, only once you are confident that it works as intended, port it to the development
board: doing so will likely render development, debugging in particular, significantly easier and
quicker.

Advice. As the documentation (i.e., comments in the source code) states, the aes_init function
allows initialisation before an associated encryption operation is then performed via the aes function:
examples include expansion of a cipher key into round keys. If your solution requires no initialisation,
aes_init can be ignored.

Advice. At this stage, your solution can and should ignore the argument r to aes_init and aes: this
only becomes relevant if/when you attempt stage 3.

Stage 2. This stage involves development of an attack implementation, modelling U per Section 3.2: your
solution should demonstrate the recovery of k̂ byU, via analysis of power consumption traces acquired
during execution of aes by T . As a starting point you could use the skeleton attack implementation
provided, although a) you are free not to, and b) can use a programming language of your choice.
There are two classes of valid solution that you can select between; since the former (resp. latter) is
easier (resp. harder), it is weighted less (resp. more) with respect to the mark scheme.

(a) In an assisted (or dependent) solution, the idea is to a) use the compiled attack implementation
provided to acquire and store a trace data set, then b) load and use said trace data set as input to
your solution.
Success criteria. Demonstrate a successful key recovery attack, executing it using a command
similar to

./attack ${FILE}

where the mandatory (file name) command-line argument ${FILE} specifies the trace data set to
use as input.

(b) In an unassisted (or independent) solution, the idea is your solution is standalone, meaning that
it can acquire then use a trace data set itself.
Success criteria. Demonstrate a successful key recovery attack, executing it using a command
similar to

./attack

For either class of solution, ensure the attack output clearly reports both the a) recovered key (repre-
sented as an octet string), and b) relevant metrics (e.g., the number of traces used).

Advice. A sensible approach would be to work step-by-step, first developing an assisted solution
and then extending it to form an unassisted solution: doing so a) employs best-practice with respet
to incremental development, plus b) decouples development of the attack itself from the challenge
of using a 2206B, plus dependency on the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11); having
acquired a trace data set in the lab. one could develop the attack itself anywhere, for example.

To support this approach and further decouple work on the attack from the 2206B, you can download
an example (compressed) trace data set from

http://tinyurl.com/5h3tux8s/csdsp/cw/AttackHW/stage2.dat.gz

An attack target implementation equivalent to the one provided (i.e., ${USER}.elf) was used to
produce the data set; if your attack implementation works using it as input, you can be confident it
will work more generally (i.e., against ${USER}.elf itself, noting of course that the cipher key will
differ).

Advice. In theory, your attack implementation will be applicable to both a) the compiled attack
target implementation provided, and b) your solution to stage 1. In practice, however, it suffices
to demonstrate your attack implementation against the former. Fixing this remit produces a more
uniform challenge (i.e., it is the same for all students, irrespective of their approach in stage 1), and
also allows independent progress with stage 2 (i.e., it removes the need to complete stage 1 first).

Advice. Although the functional correctness of your attack implementation is obviously crucial,
various additional criteria have an impact. The marksheet offers a high-level idea of the marking
scheme, but it remains your task to consider then address more specific criteria. For example, your
attack implementation will ideally be

(a) self-contained, in the sense it requires no input from the user,
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(b) robust, in the sense it produces the correct result every time (not just sometimes),

(c) generic, in the sense it produces the correct result for any material (not just your own), and

(d) efficient.

Stage 3. This stage involves development of a countermeasure within the previous attack target implementa-
tion (from stage 1), intended to secure (or a least “harden”) it against the previous attack implemen-
tation (from stage 2).

Success criteria. Demonstrate that the attack target implementation is

(a) correct, i.e., given the cipher key k̂ hard-coded in the skeleton, it correctly computes the ciphertext
c = AES.Enc(k̂,m) for a given plaintext m,

(b) efficient, i.e., yields said ciphertext within a 100ms “efficiency budget” (or time limit),

(c) secure, i.e., it is able to prevent the attack implementation recovering k̂.

Produce a document which precisely specifies plus clearly explains and justifies the countermeasure
you used, paying particular attention to the following points:

(a) the underlying design

(b) the implementation of said design, and

(c) an analysis of the trade-off between expected improvement in security and other metrics (e.g.,
latency, area), and a set of assumptions this depends on.

The document should be a PDF, of at most 2 pages (excluding the bibliography and any figures), named
stage3.pdf; You may include extra content in appendices beyond the 2-page limit, e.g., technical detail
which is useful but not crucial with respect to addressing the points above, but keep in mind this may
not be read nor assessed.

Advice. Note that the success criteria for this stage subsume those for stage 1. That is, there is no
requirement to retain the (insecure) solution for stage 1 if you submit a (secure) solution for stage 3.

Advice. Although analysis and identification of suitable countermeasures forms part of the as-
sessment, most options will require a source of randomness: per Appendix C, the argument r to
aes_init and aes provides such a source. Ensure you change SIZEOF_RND (in target.h) to suit the
requirements of your solution, so the skeleton attack target implementation can then a) advertise the
correct requirement toU, then both b) allocate enough space for, and read r correctly in main.

Advice. It is reasonable to interpret “is able to prevent” as “could plausibly prevent” rather than
“does actually prevent”. One reason for making this distinction is that various practical limitations
may prevent you actually executing the attack: a central example is the amount of physical memory
available on the lab. workstations, which limits the number of traces and/or samples per trace and so
efficacy of the attack implementation.

Stage 4. This stage involves development of a written specification. Although the initial prototype T focused
on support for AES-128 alone, the final T is intended to support a much broader suite of functionality.
In particular, imagine the use-case for T is support of TLS-based communication (between the host
system and some remote server); the context is the same, in that implementation (e.g., side-channel
and fault) attacks are pertinent in a broad sense.

Success criteria. Produce a document which (re)designs the final T , i.e., precisely specifies plus
clearly explains and justifies

(a) the functionality supported,

(b) the implementation strategy which should be adopted for said functionality, and

(c) how the host system accesses said functionality via the API, e.g., via a suitable analogue of
Section C,

aligning each point with requirements of the use-case and context.

The document should be a PDF, of at most 4 pages (excluding the bibliography and any figures), named
stage4.pdf; You may include extra content in appendices beyond the 4-page limit, e.g., technical detail
which is useful but not crucial with respect to addressing the points above, but keep in mind this may
not be read nor assessed.
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Advice. Keep in mind that although it is important to consider the implementation of your design,
there is no need to implement it: you could think of this stage as a thought experiment3 therefore, the
result of which is the specification alone.

3https://en.wikipedia.org/wiki/Thought_experiment
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A An attack target implementation: ${ARCHIVE}/board/${USER}.elf

A.1 Remit
The compiled attack target implementation provided offers a minimal exemplar that, by design, is 1) correct,
but 2) inefficient with respect to time, and insecure with respect to side-channel attack. Although it is common
to assume4 an attacker has full access to the design (e.g., to the source code) of their target, doing so conflicts
with the assignment because stage 1 tasks you with developing it yourself! Instead, sufficient partial access is
captured by the following details:

• Given that it constitutes an implementation of AES-128, it uses 128-bit block and cipher key lengths
(meaning a 16-element byte sequence, resp. octet string, representation).

• Following the notation in [1, Figure 5], the fact that Nb = 4 and Nr = 10 means a (4 × 4)-element state
matrix will be manipulated in a total of 11 rounds.

• [1, Section 6.4] refers to [3] with respect to implementation strategy. Given the platform used to execute it,
the implementation follows [3, Section 4.1] more or less verbatim: doing so a) uses an 8-bit data-path (i.e.,
it performs operations on 8-bit bytes used to represent elements of both the state and round key matrices),
and b) makes a trade-off that favours low memory footprint over low latency (resp. high throughput).
More specifically:

1. a 256 B look-up table in memory is used to store pre-computed values of the S-box (as used, e.g., in
the SubBytes round function),

2. a 256 B look-up table in memory is used to store pre-computed values of xtime (as used, e.g., in the
MixColumns round function),

3. the round keys required are not pre-computed: each encryption operation takes the cipher key and
evolves it forward, step-by-step, to form successive round keys.

A.2 Usage
You can use the compiled attack target implementation (i.e, program a SCALE development board with it) as
follows:

• Fix the working directory:
cd ${ARCHIVE}/board

• Initiate the programming process using

make PROJECT="${USER}" program

to perform the first step, and then perform each of the subsequent (manual) steps.

4Per Kerckhoffs’s principle, in contrast to “security through obscurity”; see, e.g., http://en.wikipedia.org/wiki/Kerckhoffs’s_
principle
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B An attack implementation: ${ARCHIVE}/scope/${USER}.elf

B.1 Remit
The compiled attack implementation provided offers a minimal exemplar that, by design, is a) limited with
respect to the constituent techniques used, and thus b) limited with respect to guarantees of performance and
effectiveness. The attack makes use of Correlation Power Analysis (CPA) [2]: it targets the SubBytes round
function in the first AES-128 round (i.e., the operation S-box(mi⊕ki), for some known plaintext m and unknown
cipher key k), and assumes a Hamming weight leakage model.

B.2 Usage
You can use the compiled attack implementation (i.e., mount said attack against an attack target implementa-
tion) as follows:

• Fix the working directory:
cd ${ARCHIVE}/scope

• Execute
./${USER}.elf --help

to assess the set of command-line options available, which act to control what the attack does and how it
does so.

• Execute the attack itself, either

1. manually
./${USER}.elf

or

2. automatically (via Makefile)
make attack

noting that to prevent it being overly agressive, it will abort if various limits (e.g., target implementation
execution time, number of samples, or memory footprint) are exceeded.

As a benchmark, keep in mind that when used against the attack target implementation provided (using the
default parameters per the above), the attack implementation will a) take roughly 5min to complete, including
both acquisition and analysis phases, and b) produce an uncompressed trace data set of roughly 160MB in size.

B.3 Trace data set format
Consider a data set which captures n traces each of l samples; let Λi, j denote the j-th sample of the i-th such
trace, for 0 ≤ i < n and 0 ≤ j < l. The traces will have been acquired with respect to AES-128 encryption
operations, each of which uses a (known) plaintext as input and produces a (known) ciphertext as output; let
Mi, j (resp. Ci, j) denote the j-th byte of the i-th such plaintext (resp. ciphertext) for 0 ≤ i < n and 0 ≤ j < 16.
With this in mind, the (binary) trace data set format is illustrated by Figure 3:

• If M, C, and Λ are consider as matrices, their elements are stored in row-major (or trace-major) order.

• The data types involved stem, in part, from the PicoScope API; as expressed using C, they are as follows

n { uint32_t
l { uint32_t
Mi, j { uint8_t
Ci, j { uint8_t
Λi, j { int16_t

Keep in mind that use of int16_t for each sample, i.e., each Λi, j, matches ps2000aSetDataBuffer and
ps2000aGetValues from the C binding and getDataRaw from the Python binding; as a result, they also
match lab. worksheet #1.2.
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0781516232431

n
l

M0,3 M0,2 M0,1 M0,0

. . .

M0,15 M0,14 M0,13 M0,12

. . .

Mn−1,3 Mn−1,2 Mn−1,1 Mn−1,0

. . .

Mn−1,15 Mn−1,14 Mn−1,13 Mn−1,12

C0,3 C0,2 C0,1 C0,0

. . .

C0,15 C0,14 C0,13 C0,12

. . .

Cn−1,3 Cn−1,2 Cn−1,1 Cn−1,0

. . .

Cn−1,15 Cn−1,14 Cn−1,13 Cn−1,12

Λ0,1 Λ0,0

. . .

Λ0,l−1 Λ0,l−2

. . .

Λn−1,1 Λn−1,0

. . .

Λn−1,l−1 Λn−1,l−2

Figure 3: A diagrammatic description of the (binary) trace data set format used by the attack implementation
${ARCHIVE}/scope/${USER}.elf.
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C Communication betweenU and T

C.1 Low-level representation

A textual (vs. binary) representation is used for all communication between U and T . Although a simpli-
fication5 intended to limit the assignment scope, doing so allows human users to easily interact with and so
test an implementation of T . A short explanation is that the representation is based on octet strings per lab.
worksheet #1.1, with an assumption that the same EOL semantics are adhered to; a long explanation follows,
repeated for completeness.

C.1.1 Representation of byte sequences using (hexadecimal) octet strings

The term octet6 is normally used as a synonym for byte, most often within the context of communication (and
computer networks). Using octet is arguably more precise than byte, in that the former is always 8 bits whereas
the latter can7 differ. A string is a sequence of characters, and so, by analogy, an octet string8 is a sequence
of octets: ignoring some corner cases, it is reasonable to use the term “octet string” as a synonym for “byte
sequence”.

To represent a given byte sequence, we use what can be formally termed a (little-endian) length-prefixed,
hexadecimal octet string. However, doing so requires some explanation: each element of that term relates to
a property of the representation, where we define a) little-endian9 to mean, if read left-to-right, the first octet
represents the 0-th element of the source byte sequence and the last octet represents the (n−1)-st element of the
source byte sequence, b) length-prefixed10 to mean n, the length of the source byte sequence, is prepended to the
octet string as a single 8-bit11 length or “header” octet, and c) hexadecimal12 to mean each octet is represented
by using 2 hexadecimal digits. Note that, confusingly, hexadecimal digits within each pair will be big-endian:
if read left-to-right, the most-significant is first. For convenience, we assume the term octet string is a catch-all
implying all such properties from here on.

An example likely makes all of the above much clearer: certainly there is nothing complex involved.
Concretely, consider a 16-element byte sequence

uint8_t x[ 16 ] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }

defined using C. This would be represented as

x̂ = 10:000102030405060708090A0B0C0D0E0F

using a colon to separate the length and value fields:

• the length (LHS of the colon) is the integer n = 10(16) = 16(10), and

• the value (RHS of the colon) is the byte sequence x = ⟨00(16), 01(16), . . . , 0F(16)⟩ = ⟨0(10), 1(10), . . . , 15(10)⟩ ≡ x.

Note that the special-case of an empty byte sequence is valid: now starting with the 0-element byte sequence

uint8_t x[ 0 ] = { }

defined using C, setting n to 0 and x to an empty byte sequence yields the representation

x̂ = 00:

vs. say an empty or null string, which, in contrast, is an invalid octet string.

5In reality, a binary representation can be more compact and easier to parse; it is more efficient in space and time. There are also
disadvantages, but these properties would often make it more attractive in scenarios such as the example, cf. a real protocol using a smart-
card Application Protocol Data Unit (APDU) standard; see, e.g.,http://en.wikipedia.org/wiki/Smart_card_application_protocol_
data_unit.

6http://en.wikipedia.org/wiki/Octet_(computing)
7http://en.wikipedia.org/wiki/Byte, for example, details the fact that the term “byte” can be and has been interpreted to mean

a) a group of n bits for n < w (i.e., smaller than the word size), b) the data type used to represent characters, or c) the (smallest) unit of
addressable data in memory: although POSIX mandates 8-bit bytes, for example, each of these cases permits an alternative definition.

8Note the octet string terminology stems from ASN.1 encoding; see, e.g., http://en.wikipedia.org/wiki/Abstract_Syntax_
Notation_One.

9http://en.wikipedia.org/wiki/Endianness
10http://en.wikipedia.org/wiki/String_(computer_science)
11Although it simplifies the challenge associated with parsing such a representation, note that use of an 8-bit length implies an upper

limit of 255 elements in the associated byte sequence.
12http://en.wikipedia.org/wiki/Hexadecimal
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SIZEOF_RND

Figure 4: Communication protocol for the inspect command.
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Λ |= power consumption

aes_init(k̂, r)
aes(c,m, k̂, r)

Figure 5: Communication protocol for the encrypt command.

C.1.2 UART communication and EOL semantics

The concept of the End Of Line (EOL) character (aka. newline13) seems trivial, and, in theory, is: in essence it is
a control character we expect to be associated with pressing a return (or enter) key. In practice, however, the
control character, or characters, used will differ based on various factors. The most obvious example is the use
of Carriage Return (CR), i.e., the byte 0D(16) (or C escape character '\r'), and/or Line Feed (LF), i.e., the byte
0A(16) (or C escape character '\n'), characters. Note that much of the terminology14 stems from (electronic)
typewriters. For example, CR moves the type element (or cursor) to the start of the same line, whereas LF
moves the type element to the same position on the next line; in combination (i.e., CR+LF) realises what we
normally consider to be a new line (or express verbally as “start a new line”).

As such, different EOL semantics are possible: for example a Linux will typically use LF, whereas Windows
will typically use CR+LF. You may have already observed this difference, when extra control characters appear
in a text file (e.g., C source code) first written on a Windows-based platform then transferred to a Linux-based
alternative. The same difference is important when engaging in serial communication, e.g., with a given
development board. Although not complicated, this does need some care. Arguably the easiest, and hence
recommended approach is to use the same EOL semantics as PuTTY:

1. By default, PuTTY emulates a VT100 terminal15. This means pressing the return key will transmit CR.

2. Match those semantics in your implementation. For example, one might read a line of input by consuming
characters until a CR is encountered; at this point, the CR is “eaten” (or discarded) and the line deemed
complete.

3. When receiving, PuTTY can be configured so it injects an implicit LF and/or CR. This can be useful,
since receiving CR without LF, for example, can induce (visually) odd behaviour in the terminal (per a
typewriter, lack of LF produces “overwritten” text).

4. By default the pyserial function readline waits for a LF to mark the EOL, so a CR-based alterna-
tive means taking an alternative approach. Viable approaches include a) writing a bespoke readline
replacement or b) using the TextIOWrapperwrapper, which allows an explicit selection of EOL semantics.

C.2 High-level communication

The high-level communication betweenU and T can be described using a general 4-step protocol, namely

13http://en.wikipedia.org/wiki/Newline
14See, e.g., http://en.wikipedia.org/wiki/Carriage_return
15http://en.wikipedia.org/wiki/VT100
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1. U sends a command to T ,

2. U sends input (if any) to T ,

3. T performs some computation,

4. T sends output (if any) toU.

where each step constitutes the communication of data represented as an octet string. The protocol is specialised
depending on the command, of which there are two: the commands are described in detail below, noting that
Figure 6 offers a concrete example.

• The inspect command exposes any parameters used by T , notably those related to the AES-128 im-
plementation it uses, to U. The associated protocol is illustrated in Figure 4, and can be described as
follows:

– U sends a command cmd = 00(16) (a sequence of 1 byte) to T ,

– T sends SIZEOF_BLK (a sequence of 1 byte) toU,

– T sends SIZEOF_KEY (a sequence of 1 byte) toU,

– T sends SIZEOF_RND (a sequence of 1 byte) toU.

Note that use of AES-128 means U will expect (and so can assume) SIZEOF_BLK = SIZEOF_KEY = 16,
whereas the value of SIZEOF_RND is determined by T : the default is SIZEOF_RND = 0.

• The encrypt command instructs T to execute an AES-128 encryption operation on behalf of U. The
associated protocol is illustrated in Figure 5, and can be described as follows:

– U sends a command cmd = 01(16) (a sequence of 1 byte) to T ,

– U sends an AES-128 plaintext m (a sequence of SIZEOF_BLK bytes) to T ,

– U sends some randomness r (a sequence of SIZEOF_RND bytes) to T ,

– T executes the AES implementation, i.e., invokes aes_init(k̂, r) then aes(c,m, k̂, r), using an AES-128
cipher key k̂ to encrypt the plaintext m (and thereby compute the associated ciphertext c),

– T sends an AES-128 ciphertext c (a sequence of SIZEOF_BLK bytes) toU.

Note that the provision of randomness by U to T demands some explanation. The purpose of r is
essentially to support implementation of any (randomised) countermeasures; the reasonU supplies it as
input, vs. T generating it, is a simplification16 to limit the assignment scope. Based on the above, it is
crucial thatU makes use of the inspect command to recover SIZEOF_RND: this determines the amount of
randomness required by T , and so the form required of r in each encrypt command.

16In reality, it makes no sense for T to trust U: it could be, and in this example scenario is, an adversary! It could, for example, act
adversarially by attempting to control (e.g., provide an non-random value for) or use (e.g., tailor an attack to capitalise on the known value
of) r somehow. Any real T would therefore generate r internally somehow, typically via the use of a (T)RNG of some sort.
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Figure 6: An example transcript of communication between some U and two different de-
vices T0 and T1 (which, for convenience of explanation only, use the same cipher key k̂ =
⟨D3(16), 85(16), 33(16), 46(16), 02(16), 8B(16), 6E(16), 24(16), 86(16), 62(16),E9(16), 95(16),AB(16), 68(16), 7E(16), 25(16)⟩): note that
T0 has SIZEOF_RND = 0 whereas T1 has SIZEOF_RND = 16, which is reflected in the r subsequently communicated in
each case.
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