Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of vegetation on meandering rivers

Abstract

The Palaeozoic evolution of land plants revolutionized river geomorphology. However, the relationships between biotic forcing and channel dynamics are still debated and, as such, the impacts of anthropogenic stressors such as climate change, reduced biodiversity and aridification on modern meandering rivers and their biogeochemical fluxes remain poorly understood. In this Review, we propose a unifying framework based on field and modelling data that describes the stability and dynamics of meandering rivers in both the presence and the absence of land plants. Based on evidence from the pre-vegetation rock record and from modern systems, we emphasize that meandering streams can indeed arise in the absence of land plants. However, plant evolution provided widespread settings suitable for stable meandering systems through retention of floodplain mud, sediment baffling and mechanical strengthening of channel banks. Altogether, these processes slowed the characteristic rates of meander growth and floodplain-soil reworking by up to an order of magnitude. Continued anthropogenic removal of riparian and watershed vegetation due to increased urbanization, deforestation, aridification and pollution could revert streams to pre-vegetation functioning, thereby increasing their channel and sediment mobility. Future research can use this framework to constrain the pace of ancient landscape processes on Earth and Mars, in addition to modern terrestrial rivers impacted by humans.

Key points

  • Reassessment of the pre-vegetation rock record and novel investigations of modern desert streams reveal that meandering rivers can be naturally stable in the absence of vegetation.

  • Notwithstanding the above, the rock record provides compelling evidence that the evolution of land vegetation provided a template for the stability of meandering rivers across a wider variety of landscapes.

  • The analysis of channel and sediment mobility in meandering rivers is key to understanding watershed-scale biogeochemistry, particularly in relation to weathering processes and floodplain carbon stocks and fluxes.

  • Integrating data sets from the rock record, numerical models and modern channel morphometry and hydrology is key to disclosing tighter links between biological and physical processes in alluvial plains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A brief history of Earth’s rivers.
Fig. 2: Evolution of land plants.
Fig. 3: Stability fields for river planforms.
Fig. 4: Meandering rivers in barren and vegetated landscapes.

Similar content being viewed by others

References

  1. Abdel-Galil, R. E. S. Desert reclamation, a management system for sustainable urban expansion. Progr. Plan. 78, 151–206 (2012).

    Article  Google Scholar 

  2. East, A. E. & Sankey, J. B. Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the western United States. Rev. Geophys. 58, e2019RG000692 (2020).

    Article  Google Scholar 

  3. Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 79, 460–487 (2006).

    Article  Google Scholar 

  4. Gurnell, A., Lee, M. & Souch, C. Urban rivers: hydrology, geomorphology, ecology and opportunities for change. Geogr. Compass 1, 1118–1137 (2007).

    Article  Google Scholar 

  5. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  Google Scholar 

  6. Bathurst, J. C., Thorne, C. R. & Hey, R. D. Direct measurements of secondary currents in river bends. Nature 269, 504–506 (1977).

    Article  Google Scholar 

  7. Thorne, C. R. et al. Direct measurements of secondary currents in a meandering sand-bed river. Nature 315, 746–747 (1985).

    Article  Google Scholar 

  8. Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).

    Article  Google Scholar 

  9. Seminara, G. Meanders. J. Fluid Mech. 554, 271–297 (2006).

    Article  Google Scholar 

  10. Leopold, L. B. & Wolman, M. G. River channel patterns: braided, meandering, and straight. Geological Survey professional paper 282-B (US Government Printing Office, 1957).

  11. Schumm, S. A. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 13, 5–27 (1985).

    Article  Google Scholar 

  12. Candel, J., Kleinhans, M., Makaske, B. & Wallinga, J. Predicting river channel pattern based on stream power, bed material and bank strength. Progr. Phys. Geogr. Earth Environ. 45, 253–278 (2021).

    Article  Google Scholar 

  13. Corenblit, D. et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth Sci. Rev. 106, 307–331 (2011).

    Article  Google Scholar 

  14. Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dynam. 5, 711–730 (2017).

    Article  Google Scholar 

  15. Thomas, R. G. et al. Inclined heterolithic stratification — Terminology, description, interpretation and significance. Sediment. Geol. 53, 123–179 (1987).

    Article  Google Scholar 

  16. Corenblit, D. & Steiger, J. Vegetation as a major conductor of geomorphic changes on the Earth surface: toward evolutionary geomorphology. Earth Surf. Process. Landf. 34, 891–896 (2009).

    Article  Google Scholar 

  17. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    Article  Google Scholar 

  18. Santos, M. G. M., Mountney, N. P. & Peakall, J. Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation. J. Geol. Soc. 174, 393–404 (2017).

    Article  Google Scholar 

  19. Santos, M. G. M. et al. Reply to Discussion on ‘Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation’. J. Geol. Soc. 174, 950–952 (2017).

    Article  Google Scholar 

  20. Davies, N. S. et al. Discussion on ‘Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation’. J. Geol. Soc. 174, 947–950 (2017).

    Article  Google Scholar 

  21. Donselaar, M. E., Cuevas Gonzalo, M. C. & Moyano, S. Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: lessons from the Río Colorado, Altiplano endorheic basin, Bolivia. Sediment. Geol. 283, 1–14 (2013).

    Article  Google Scholar 

  22. Li, J. et al. An ephemeral meandering river system: sediment dispersal processes in the Río Colorado, Southern Altiplano Plateau, Bolivia. Z. Geomorphol. 59, 301–317 (2015).

    Article  Google Scholar 

  23. Santos, M. G. M. et al. Meandering rivers in modern desert basins: implications for channel planform controls and prevegetation rivers. Sediment. Geol. 385, 1–14 (2019).

    Article  Google Scholar 

  24. Ielpi, A. Morphodynamics of meandering streams devoid of plant life: Amargosa River, Death Valley, California. Geol. Soc. Am. Bull. 131, 782–802 (2019).

    Article  Google Scholar 

  25. Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and Martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).

    Article  Google Scholar 

  26. Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Article  Google Scholar 

  27. Howard, A. D. How to make a meandering river. Proc. Natl Acad. Sci. USA 106, 17245–17246 (2009).

    Article  Google Scholar 

  28. Matsubara, Y. et al. River meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK and the Quinn River, NV. Geomorphology 240, 102–120 (2015).

    Article  Google Scholar 

  29. Pondrelli, M. et al. Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197, 429–451 (2008).

    Article  Google Scholar 

  30. Goudge, T. A., Mohrig, D. A., Cardenas, B. T., Hughes, C. M. & Fassett, C. I. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus 301, 58–75 (2018).

    Article  Google Scholar 

  31. Lapôtre, M. G. A. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).

    Article  Google Scholar 

  32. Lapôtre, M. G. A. et al. Probing space to understand Earth. Nat. Rev. Earth Environ. 1, 170–181 (2020).

    Article  Google Scholar 

  33. Salese, F. et al. Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record. Nat. Commun. 11, 2067 (2020).

    Article  Google Scholar 

  34. Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001).

    Article  Google Scholar 

  35. Fedo, C. M. Setting and origin for problematic rocks from the >3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth’s oldest coarse clastic sediments. Precambrian Res. 101, 69–78 (2000).

    Article  Google Scholar 

  36. Reimink, J. R., Davies, H. H. L. & Ielpi, A. Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean. Earth Planet. Sci. Lett. 554, 116654 (2021).

    Article  Google Scholar 

  37. Eriksson, K. A. & Fedo, C. M. Archean synrift and stable-shelf sedimentary successions. Dev. Precambrian Geol. 11, 171–204 (1994).

    Article  Google Scholar 

  38. Donaldson, J. A. & de Kemp, E. A. Archaean quartz arenites in the Canadian Shield: examples from the Superior and Churchill Provinces. Sediment. Geol. 120, 153–176 (1998).

    Article  Google Scholar 

  39. Bleeker, W., Ketchum, J. W. F., Jackson, V. A. & Villeneuve, M. E. The Central Slave Basement Complex, Part I: its structural topology and autochthonous cover. Can. J. Earth Sci. 36, 1083–1109 (1999).

    Article  Google Scholar 

  40. Bleeker, W. in The Early Earth: Physical, Chemical and Biological Development (eds Fowler, C. M. R., Ebinger, C. J. & Hawkesworth, C. J.) 151–181 (Geological Society of London, 2002).

  41. Mueller, W. U. & Corcoran, P. L. Late-orogenic basins in the Archaean Superior Province, Canada: characteristics and inferences. Sediment. Geol. 120, 177–203 (1998).

    Article  Google Scholar 

  42. Ielpi, A. et al. Fluvial floodplains prior to greening of the continents: stratigraphic record, geodynamic setting, and modern analogues. Sediment. Geol. 372, 140–172 (2018).

    Article  Google Scholar 

  43. Long, D. G. F. Archean fluvial deposits: a review. Earth Sci. Rev. 188, 148–175 (2018).

    Article  Google Scholar 

  44. Frieman, B. M., Kuiper, Y. D., Kelly, N. M., Monecke, T. & Kylander-Clark, A. Constraints on the geodynamic evolution of the southern Superior Province: U-Pb LA-ICP-MS analysis of detrital zircon in successor basins of the Archean Abitibi and Pontiac subprovinces of Ontario and Quebec, Canada. Precambrian Res. 292, 398–416 (2017).

    Article  Google Scholar 

  45. Zhao, G., Cawood, P. A., Wilde, S. A. & Sun, M. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59, 125–162 (2002).

    Article  Google Scholar 

  46. Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  47. Ielpi, A., Ghinassi, M., Rainbird, R. H. & Ventra, D. in Fluvial Meanders and Their Sedimentary Products in the Rock Record (eds Ghinassi, M., Colombera, L., Mountney, N. P. & Reesink, A. J.) 81–118 (International Association of Sedimentologists, 2018).

  48. Davidson, A. Late Paleoproterozoic to mid-Neoproterozoic history of northern Laurentia: an overview of central Rodinia. Precambrian Res. 160, 5–22 (2008).

    Article  Google Scholar 

  49. Fralick, P. & Zaniewski, K. Sedimentology of a wet, pre-vegetation floodplain assemblage. Sedimentology 59, 1030–1049 (2012).

    Article  Google Scholar 

  50. Marconato, A., de Almeida, R. P., Turra, B. B. & dos Santos Fragoso-Cesar, A. R. Pre-vegetation fluvial floodplains and channel-belts in the Late Neoproterozoic–Cambrian Santa Bárbara Group (Southern Brazil). Sediment. Geol. 300, 49–61 (2014).

    Article  Google Scholar 

  51. de Almeida, R. P., Marconato, A., Freitas, B. T. & Turra, B. B. The ancestors of meandering rivers. Geology 44, 203–206 (2016).

    Article  Google Scholar 

  52. Ielpi, A. & Rainbird, R. H. Reappraisal of Precambrian sheet-braided rivers: evidence for 1.9 Ga deep-channelled drainage. Sedimentology 63, 1550–1581 (2016).

    Article  Google Scholar 

  53. Long, D. G. F. in Fluvial Sedimentology Memoir 5 (ed. Miall, A. D.) 313–342 (Canadian Society of Petroleum Geologists, 1978).

  54. Long, D. G. F. in From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation (eds Davidson, S., Leleu, S. & North, C. P.) 37–61 (SEPM, 2011).

  55. Sarkar, S., Samanta, P., Mukhopadhyay, S. & Bose, P. K. Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context. Precambrian Res. 214–215, 210–226 (2012).

    Article  Google Scholar 

  56. Ielpi, A. & Rainbird, R. H. Architecture and morphodynamics of a 1.6 Ga fluvial sandstone: Ellice Formation of Elu Basin, Arctic Canada. Sedimentology 62, 1950–1977 (2015).

    Article  Google Scholar 

  57. Ielpi, A., Ventra, D. & Ghinassi, M. Deeply channelled Precambrian rivers: remote sensing and outcrop evidence from the 1.2 Ga Stoer Group of NW Scotland. Precambrian Res. 281, 291–311 (2016).

    Article  Google Scholar 

  58. Santos, M. G. M. & Owen, G. Heterolithic meandering-channel deposits from the Neoproterozoic of NW Scotland: implications for palaeogeographic reconstructions of Precambrian sedimentary environments. Precambrian Res. 272, 226–243 (2016).

    Article  Google Scholar 

  59. Ganti, V., Whittaker, A. C., Lamb, M. P. & Fischer, W. W. Low-gradient, single-threaded rivers prior to the greening of the continents. Proc. Natl Acad. Sci. USA 116, 11652–11657 (2019).

    Article  Google Scholar 

  60. Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 1–17 (2011).

    Article  Google Scholar 

  61. Gutzmer, J. & Beukes, N. J. Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology 26, 263–266 (1998).

    Article  Google Scholar 

  62. Planavski, N. J. et al. Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Environ. 2, 123–139 (2021).

    Article  Google Scholar 

  63. Álvaro, B., Van Vliet-Lanoë, V., Vennin, E. & Blanc-Valleron, M.-M. Lower Cambrian paleosols from the Cantabrian Mountains (northern Spain): a comparison with Neogene–Quaternary estuarine analogues. Sediment. Geol. 163, 67–84 (2003).

    Article  Google Scholar 

  64. Basilici, G., Soares, M. V. T., Mountney, N. P. & Colombera, L. Microbial influence on the accumulation of Precambrian aeolian deposits (Neoproterozoic, Venkatpur Sandstone Formation, Southern India). Precambrian Res. 347, 105854 (2020).

    Article  Google Scholar 

  65. Davies, N. S., Shillito, A. P. & McMahon, W. J. Short-term evolution of primary sedimentary surface textures (microbial, abiotic, ichnological) on a dry stream bed: modern observations and ancient implications. Palaios 32, 125–134 (2017).

    Article  Google Scholar 

  66. McMahon, W. J., Davies, N. S. & Went, D. J. Negligible microbial matground influence on pre-vegetation river functioning: evidence from the Ediacaran-Lower Cambrian Series Rouge, France. Precambrian Res. 292, 13–34 (2017).

    Article  Google Scholar 

  67. Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Early Devonian: a wildfire-derived Konservat–Lagerstätte. Rev. Palaeobot. Palynol. 143, 131–136 (2006).

    Article  Google Scholar 

  68. Knoll, A. H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39, 217–239 (2011).

    Article  Google Scholar 

  69. Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000).

    Google Scholar 

  70. Baars, C., Jones, T. H. & Edwards, D. Microcosm studies of the role of land plants in elevating soil carbon dioxide and chemical weathering. Glob. Biogeochem. Cycles 22, GB3019 (2008).

    Article  Google Scholar 

  71. Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 30, 9704–9709 (2016).

    Article  Google Scholar 

  72. Prave, A. R. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30, 811–814 (2002).

    Article  Google Scholar 

  73. Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 188, 365–369 (2010).

    Article  Google Scholar 

  74. Libertín, M., Kvaček, J., Bek, J., Žárský, V. & Štorch, P. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nat. Plants 4, 269–271 (2018).

    Article  Google Scholar 

  75. Gensel, P. G. The earliest land plants. Annu. Rev. Ecol. Evol. Syst. 39, 459–477 (2009).

    Article  Google Scholar 

  76. Cotter, E. in Fluvial Sedimentology — Memoir 5 (ed. Miall, A. D.) 361–383 (Canadian Society of Petroleum Geologists, 1978).

  77. Davies, N. S. & Gibling, M. R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38, 51–54 (2010).

    Article  Google Scholar 

  78. Davies, N. S. & Gibling, M. R. Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Nat. Geosci. 4, 629–633 (2011).

    Article  Google Scholar 

  79. Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).

    Article  Google Scholar 

  80. Davies, N. S. & Gibling, M. R. The sedimentary record of Carboniferous rivers: continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth Sci. Rev. 120, 40–79 (2013).

    Article  Google Scholar 

  81. Davies, N. S., Gibling, M. R. & Rygel, M. C. Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58, 220–258 (2011).

    Article  Google Scholar 

  82. Gibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).

    Article  Google Scholar 

  83. McMahon, W. J. & Davies, N. S. in Fluvial Meanders and Their Sedimentary Products in the Rock Record Special Publication 48 (eds Ghinassi, M., Colombera, L., Mountney, N. P. & Reesink, A. J.) 119–148 (International Association of Sedimentologists, 2018).

  84. Abdullatif, O. M. Channel-fill and sheet-flood facies sequences in the ephemeral terminal River Gash, Kassala, Sudan. Sediment. Geol. 63, 171–184 (1989).

    Article  Google Scholar 

  85. Trewin, N. H. Controls on fluvial deposition in mixed fluvial and aeolian facies within the Tumblagooda Sandstone (Late Silurian) of Western Australia. Sediment. Geol. 85, 387–400 (1993).

    Article  Google Scholar 

  86. Kennedy, K. L. et al. Lower Devonian coaly shales of northern New Brunswick, Canada: plant accumulations in the early stages of terrestrial colonization. J. Sediment. Res. 83, 1202–1215 (2013).

    Article  Google Scholar 

  87. Edwards, D. & Richardson, J. B. Silurian and Lower Devonian plant assemblages from the Anglo-Welsh Basin: a palaeobotanical and palynological synthesis. Geol. J. 39, 375–402 (2004).

    Article  Google Scholar 

  88. Boyce, C. K. et al. Devonian landscape heterogeneity recorded by a giant fungus. Geology 35, 399–402 (2007).

    Article  Google Scholar 

  89. Le Hir, G. et al. The climate change caused by the land plant invasion in the Devonian. Earth Planet. Sci. Lett. 310, 203–212 (2011).

    Article  Google Scholar 

  90. Boyce, C. K. & Lee, J.-E. Plant evolution and climate over geological timescales. Annu. Rev. Earth Planet. Sci. 45, 61–87 (2017).

    Article  Google Scholar 

  91. Stein, W. E., Mannolini, F., VanAller Hernick, L., Landing, E. & Berry, C. M. Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 446, 904–907 (2007).

    Article  Google Scholar 

  92. Stein, W. E., Berry, C. M., VanAller Hernick, L. & Monnolini, F. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483, 78–81 (2012).

    Article  Google Scholar 

  93. Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431 (2020).

    Article  Google Scholar 

  94. Davies, N. J., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian Landscape Factory: plant-sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. 178, jgs2020–jgs2225 (2021).

    Article  Google Scholar 

  95. Hartley, A. J. et al. Recognition and importance of amalgamated sandy meander belts in the continental rock record. Geology 43, 679–682 (2015).

    Article  Google Scholar 

  96. Hartley, A. J., Owen, A., Weissmann, G. S. & Scuderi, L. in Fluvial Meanders and Their Sedimentary Products in the Rock Record Special Publication 48 (eds Ghinassi, M., Colombera, L., Mountney, N. P. & Reesink, A. J.) 349–384 (International Association of Sedimentologists, 2018).

  97. Hillier, R. D., Edwards, D. & Morrissey, L. B. Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their producers. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 366–388 (2008).

    Article  Google Scholar 

  98. Xue, J. et al. Belowground rhizomes in paleosols: the hidden half of an Early Devonian vascular plant. Proc. Natl Acad. Sci. USA 113, 9451–9456 (2016).

    Article  Google Scholar 

  99. Kleinhans, M. G., de Vries, B., Braat, L. & van Oorschot, M. Living landscapes: muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surf. Process. Landf. 43, 2948–2963 (2018).

    Article  Google Scholar 

  100. Calder, J. H., Gibling, M. R., Scott, A. C., Davies, S. J. & Hebert, B. L. in Wetlands Through Time Special Paper 399 (eds Greb, S. F. & DiMichele, W. A.) 169–195 (Geological Society of America, 2006).

  101. Gibling, M. R., Bashforth, A. R., Falcon-Lang, H. J., Allen, J. P. & Fielding, C. R. Log jams and flood sediment buildup caused channel abandonment and avulsion in the Pennsylvanian of Atlantic Canada. J. Sediment. Res. 80, 268–287 (2010).

    Article  Google Scholar 

  102. Ielpi, A. et al. Role of vegetation in shaping Early Pennsylvanian braided rivers: architecture of the Boss Point Formation, Atlantic Canada. Sedimentology 61, 1659–1700 (2014).

    Article  Google Scholar 

  103. Gulbranson, E. L., Cornamusini, G., Ryberg, P. E. & Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109544 (2020).

    Article  Google Scholar 

  104. Hilton, J. & Cleal, C. J. The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implications. Earth Sci. Rev. 85, 85–116 (2007).

    Article  Google Scholar 

  105. DiMichele, W. A. & Aronson, R. B. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution 46, 807–824 (1992).

    Article  Google Scholar 

  106. Sahney, S., Benton, M. J. & Falcon-Lang, H. J. Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica. Geology 38, 1079–1082 (2010).

    Article  Google Scholar 

  107. Rees, P. M. et al. Permian phytogeographic patterns and climate data/model comparisons. J. Geol. 110, 1–31 (2002).

    Article  Google Scholar 

  108. Ielpi, A., Gibling, M. R., Bashforth, A. R. & Dennar, C. I. Impact of vegetation on Early Pennsylvanian fluvial channels: insight from the Joggins Formation of Atlantic Canada. J. Sediment. Res. 85, 999–1018 (2015).

    Article  Google Scholar 

  109. Greb, S. F., DiMichele, W. A. & Gastaldo, R. A. in Wetlands Through Time (eds Greb, S. F. & DiMichele, W. A.) 1–40 (Geological Society of America, 2006).

  110. Boyce, C. K., Fan, Y. & Zwieniecki, M. A. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution. New Phytol. 215, 552–557 (2017).

    Article  Google Scholar 

  111. Long, D. G. F. in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems (eds Altermann, W. & Corcoran, P.) 323–338 (International Association of Sedimentologists, 2002).

  112. Long, D. G. F. Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style. Sediment. Geol. 190, 71–95 (2006).

    Article  Google Scholar 

  113. Went, D. J. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52, 693–713 (2005).

    Article  Google Scholar 

  114. Went, D. J. Alluvial fan, braided river and shallow-marine turbidity current deposits in the Port Lazo and Roche Jagu formations, Northern Brittany: relationships to andesite emplacements and implications for age of the Plourivo-Plouézec Group. Geol. Mag. 154, 1037–1060 (2017).

    Article  Google Scholar 

  115. Santos, M. G. M., de Almeida, R. P., Godinho, L. P. S., Marconato, A. & Mountney, N. P. Distinct styles of fluvial deposition in a Cambrian rift basin. Sedimentology 61, 881–914 (2014).

    Article  Google Scholar 

  116. Ielpi, A. & Ghinassi, M. A sedimentary model for early Palaeozoic fluvial fans, Alderney Sandstone Formation (Channel Islands, UK). Sediment. Geol. 342, 31–46 (2016).

    Article  Google Scholar 

  117. Ghinassi, M. & Ielpi, A. Precambrian snapshots: morphodynamics of Torridonian fluvial braid bars revealed by three-dimensional photogrammetry and outcrop sedimentology. Sedimentology 65, 492–516 (2017).

    Article  Google Scholar 

  118. Ielpi, A. River functioning prior to the rise of land plants: a uniformitarian outlook. Terra Nova 30, 341–349 (2018).

    Article  Google Scholar 

  119. Ielpi, A., Rainbird, R. H., Ventra, D. & Ghinassi, M. Morphometric convergence between Proterozoic and post-vegetation rivers. Nat. Commun. 8, 15250 (2017).

    Article  Google Scholar 

  120. Ikeda, H. On the bed configuration in alluvial channels; their types and condition of formation with reference to bars. Geogr. Rev. Jpn. 48, 712–730 (1975).

    Article  Google Scholar 

  121. Parker, G. On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76, 457–480 (1976).

    Article  Google Scholar 

  122. McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    Article  Google Scholar 

  123. Zeichner, S. S. et al. Early plant organics increased global terrestrial mud deposition through enhanced flocculation. Science 371, 526–529 (2021).

    Article  Google Scholar 

  124. Owen, G. & Santos, M. G. M. Soft-sediment deformation in a pre-vegetation river system: the Neoproterozoic Torridonian of NW Scotland. Proc. Geol. Assoc. 125, 511–523 (2014).

    Article  Google Scholar 

  125. McCormick, D. S. & Grotzinger, J. P. Distinction of marine from alluvial facies in the Paleoproterozoic (1.9 Ga) Burnside Formation, Kilohigok Basin, N.W.T., Canada. J. Sediment. Petrol. 63, 398–419 (1993).

    Google Scholar 

  126. Eriksson, P. G. et al. Precambrian clastic sedimentation systems. Sediment. Geol. 120, 5–53 (1998).

    Article  Google Scholar 

  127. Went, D. J. Quartzite development in early Palaeozoic nearshore marine environments. Sedimentology 60, 1036–1058 (2013).

    Article  Google Scholar 

  128. Bradley, G.-M., Redfern, J., Hodgetts, D., George, A. D. & Wach, G. D. The applicability of modern tidal analogues to pre-vegetation paralic depositional models. Sedimentology 65, 2171–2201 (2018).

    Article  Google Scholar 

  129. Ielpi, A. & Lapôtre, M. G. A. Barren meandering streams in the modern Toiyabe Basin of Nevada, U.S.A., and their relevance to the study of the pre-vegetation rock record. J. Sediment. Res. 89, 399–415 (2019).

    Article  Google Scholar 

  130. Ielpi, A. & Lapôtre, M. G. A. Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah. Sedimentology 66, 1896–1929 (2019).

    Article  Google Scholar 

  131. Ielpi, A., Lapôtre, M. G. A., Finotello, A., Ghinassi, M. & D’Alpaos, A. Channel mobility drives a diverse stratigraphic architecture in the dryland Mojave River (California, USA). Earth Surf. Process. Landf. 45, 1717–1731 (2020).

    Article  Google Scholar 

  132. Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Article  Google Scholar 

  133. Schwendel, A. C., Nicholas, A. P., Aalto, R. E., Sambrook Smith, G. H. & Buckley, S. Interaction between meander dynamics and floodplain heterogeneity in a large tropical sand-bed river: the Rio Beni, Bolivian Amazon. Earth Surf. Process. Landf. 40, 2026–2040 (2015).

    Article  Google Scholar 

  134. Ahmed, J., Constantine, J. A. & Dunne, T. The role of sediment supply in the adjustment of channel sinuosity across the Amazon Basin. Geology 47, 807–810 (2019).

    Article  Google Scholar 

  135. Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).

    Article  Google Scholar 

  136. Lazarus, E. D. & Constantine, J. D. Generic theory for channel sinuosity. Proc. Natl Acad. Sci. USA 110, 8447–8452 (2013).

    Article  Google Scholar 

  137. Schumm, A. The shape of alluvial channels in relation to sediment type. US Geol. Surv. Prof. Pap. 352, 17–30 (1960).

    Google Scholar 

  138. Hooke, J. M. Complexity, self-organization and variation in behaviour in meandering rivers. Geomorphology 91, 236–258 (2007).

    Article  Google Scholar 

  139. Dunne, K. B. J. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).

    Article  Google Scholar 

  140. Peakall, J., Ashworth, P. J. & Best, J. L. Meander-bend evolution, alluvial architecture, and the role of cohesion in sinuous river channels: a flume study. J. Sediment. Res. 77, 197–212 (2007).

    Article  Google Scholar 

  141. van Dijk, W., van de Lageweg, W. I. & Kleinhans, M. G. Experimental meandering river with chute cutoffs. J. Geophys. Res. Earth Surf. 117, F03023 (2012).

    Google Scholar 

  142. van Dijk, W., van de Lageweg, W. I. & Kleinhans, M. G. Formation of a cohesive floodplain in a dynamic experimental meandering river. Earth Surf. Process. Landf. 38, 1550–1565 (2013).

    Google Scholar 

  143. Howard, A. D. in Lowland Floodplain Rivers: Geomorphological Properties (eds Carling P. A. & Petts, G. E.) 1–41 (Wiley, 1992).

  144. Slingerland, R. & Smith, N. D. Necessary conditions for a meandering-river avulsion. Geology 26, 435–438 (1998).

    Article  Google Scholar 

  145. Constantine, J. A. & Dunne, T. Meander cutoff and controls on the production of oxbow lakes. Geology 36, 23–26 (2008).

    Article  Google Scholar 

  146. Smith, D. G. Effect of vegetation on lateral migration of anastomosed channels of a glacier meltwater river. Geol. Soc. Am. Bull. 87, 857–860 (1976).

    Article  Google Scholar 

  147. Graf, W. L. Fluvial adjustments to the spread of tamarisk in the Colorado Plateau region. Geol. Soc. Am. Bull. 89, 1491–1501 (1978).

    Article  Google Scholar 

  148. Micheli, E. R., Kirchner, J. W. & Larsen, E. W. Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, central Sacramento River, California, USA. River Res. Appl. 20, 537–548 (2004).

    Article  Google Scholar 

  149. Schumm, A. Speculation concerning paleohydrologic controls of terrestrial sedimentation. Geol. Soc. Am. Bull. 79, 1573–1588 (1968).

    Article  Google Scholar 

  150. Rygel, M. C., Gibling, M. R. & Calder, J. H. Vegetation-induced sedimentary structures from fossil forests in the Pennsylvanian Joggins Formation, Nova Scotia. Sedimentology 51, 531–552 (2004).

    Article  Google Scholar 

  151. Abernethy, B. & Rutherfurd, I. D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Process. Landf. 25, 921–937 (2000).

    Article  Google Scholar 

  152. Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena 69, 197–205 (2007).

    Article  Google Scholar 

  153. Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    Article  Google Scholar 

  154. Tal, M. & Paola, C. Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments. Earth Surf. Process. Landf. 35, 1014–1028 (2010).

    Article  Google Scholar 

  155. Eaton, B. C. & Giles, T. R. Assessing the effect of vegetation-related bank strength on channel morphology and stability in gravel-bed streams using numerical models. Earth Surf. Process. Landf. 34, 712–724 (2009).

    Article  Google Scholar 

  156. Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl Acad. Sci. USA 106, 16936–16941 (2009).

    Article  Google Scholar 

  157. Hales, T. C., Ford, C. R., Hwang, T., Vose, J. M. & Band, L. E. Topographic and ecologic controls on root reinforcement. J. Geophys. Res. Earth Surf. 114, F03013 (2009).

    Article  Google Scholar 

  158. van de Lageweg, W., van Dijk, W. M., Hoendervoogt, R. & Kleinhans, M. G. Effects of riparian vegetation on experimental channel dynamics. River Flow 2010, 1331–1338 (2010).

    Google Scholar 

  159. Perona, P. et al. Biomass selection by floods and related timescales: Part 1. Experimental observations. Adv. Water Resour. 39, 85–96 (2012).

    Article  Google Scholar 

  160. van Dijk, W. M., Teske, R., van de Lageweg, W. & Kleinhans, M. G. Effects of vegetation distribution on experimental river channel dynamics. Water Resour. Res. 49, 7558–7574 (2013).

    Article  Google Scholar 

  161. Kyuka, T. et al. Morphodynamic effects of vegetation life stages on experimental meandering channels. Earth Surf. Process. Landf. 46, 1225–1237 (2021).

    Article  Google Scholar 

  162. Li, J., Tooth, S. & Yao, G. Cascades of sub-decadal, channel-floodplain changes in low-gradient, non-vegetated reaches near a dryland river terminus: Salar de Uyuni, Bolivia. Earth Surf. Process. Landf. 44, 490–506 (2019).

    Article  Google Scholar 

  163. Shields, F. D. Jr. & Gray, D. H. Effects of woody vegetation on sandy levee integrity. Water Res. Bull. 5, 917–931 (1992).

    Article  Google Scholar 

  164. Konsoer, K. M. et al. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252, 80–97 (2016).

    Article  Google Scholar 

  165. Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 39, 4–25 (2014).

    Article  Google Scholar 

  166. Mitchell, R. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).

    Article  Google Scholar 

  167. Ielpi, A. Controls on sinuosity in the sparsely vegetated Fossálar River, southern Iceland. Geomorphology 286, 93–109 (2017).

    Article  Google Scholar 

  168. Coulthard, T. J. Effects of vegetation on braided stream pattern and dynamics. Water Resour. Res. 41, W04003 (2005).

    Article  Google Scholar 

  169. Wohl, E. & Scamardo, J. E. The resilience of logjams to floods. Hydrol. Process. 35, e13970 (2021).

    Article  Google Scholar 

  170. Jerolmack, D. J. & Mohrig, D. Conditions for branching in depositional rivers. Geology 35, 463–466 (2007).

    Article  Google Scholar 

  171. Ternat, F., Boyer, P., Anselmet, F. & Amielh, M. Erosion threshold of saturated natural cohesive sediments: modeling and experiments. Water Resour. Res. 44, W11434 (2008).

    Article  Google Scholar 

  172. Turnbull, W. J., Krinitzky, E. L. & Weaver, F. J. Bank erosion in soils of the lower Mississippi valley. J. Soil Mech. Found. Div. 92, 121–136 (1966).

    Article  Google Scholar 

  173. Smith, D. G., Hubbard, S. M., Leckie, D. A. & Fustic, M. Counter point bar deposits: lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology 56, 1655–1669 (2009).

    Article  Google Scholar 

  174. Ielpi, A. & Ghinassi, M. Planform architecture, stratigraphic signature, and morphodynamics of an exhumed Jurassic meander plain (Scalby Formation, Yorkshire, UK). Sedimentology 61, 1923–1960 (2014).

    Article  Google Scholar 

  175. Montgomory, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002).

    Article  Google Scholar 

  176. Driese, S. G., Nordt, L. C. & Stinchcomb, G. E. in Hydrogeology, Chemical Weathering, and Soil Formation (eds Hunt, A., Egli, M. & Faybishenko, B.) 21–65 (American Geophysical Union, 2021).

  177. Potter, P. E. Petrology and chemistry of modern big river sands. J. Geol. 86, 423–449 (1978).

    Article  Google Scholar 

  178. Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  179. Johnsson, M. J. Tectonic versus chemical-weathering controls on the composition of fluvial sands in tropical environments. Sedimentology 37, 713–726 (1990).

    Article  Google Scholar 

  180. Johnsson, M. J., Stallard, R. F. & Lundberg, N. Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia. Geol. Soc. Am. Bull. 103, 1622–1647 (1991).

    Article  Google Scholar 

  181. Syvitski, J. P. M., Cohen, S., Kettner, A. J. & Brakenridge, G. R. How important and different are tropical rivers? — An overview. Geomorphology 227, 5–17 (2014).

    Article  Google Scholar 

  182. Hoffman, P. F. & Grotzinger, J. P. Orographic precipitation, erosional unloading, and tectonic style. Geology 21, 195–198 (1993).

    Article  Google Scholar 

  183. Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambrian Res. 147, 148–155 (2006).

    Article  Google Scholar 

  184. Tosca, N. J. et al. Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochim. Cosmochim. Acta 74, 1579–1592 (2010).

    Article  Google Scholar 

  185. Bachan, A. & Kump, L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proc. Natl Acad. Sci. USA. 112, 6562–6567 (2015).

    Article  Google Scholar 

  186. Algeo, T. J. & Scheckler, S. E. Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Phil. Trans. R. Soc. Lond. B 353, 113–130 (1998).

    Article  Google Scholar 

  187. Quirk, J. et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8, 1006–1011 (2012).

    Article  Google Scholar 

  188. Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).

    Article  Google Scholar 

  189. Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).

    Article  Google Scholar 

  190. Anderson, R. S. & Humphrey, N. F. in Quantitative Dynamic Stratigraphy (ed Cross, T. A.) 349–361 (Prentice Hall, 1990).

  191. Waldbauer, J. R. & Chamberlain, C. P. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Ecological Studies 177 (eds Baldwin, I. T. et al.) 166–184 (Springer, 2005).

  192. MacNaughton, B., Dalrymple, R. W. & Narbonne, G. M. Early Cambrian braid-delta deposits, MacKenzie Mountains, north-western Canada. Sedimentology 44, 587–609 (1997).

    Article  Google Scholar 

  193. Dott, R. H. Jr The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes. J. Geol. 111, 387–405 (2003).

    Article  Google Scholar 

  194. Noffke, N., Gerdes, G. & Klenke, T. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci. Rev. 62, 163–176 (2003).

    Article  Google Scholar 

  195. Fedorchuk, N. D. et al. Early non-marine life: evaluating the biogenicity of Mesoproterozoic fluvial-lacustrine stromatolites. Precambrian Res. 275, 105–118 (2016).

    Article  Google Scholar 

  196. Reesink, A. J. H. et al. Interpreting pre-vegetation landscape dynamics: the Cambrian Lower Mount Simon Sandstone, Illinois, USA. J. Sediment. Res. 90, 1614–1641 (2020).

    Article  Google Scholar 

  197. Drever, J. I. The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58, 2325–2332 (1994).

    Article  Google Scholar 

  198. Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  199. D’Antonio, M. P., Ibarra, D. E. & Boyce, C. K. Land plant evolution decreased, rather than increased, weathering rates. Geology 48, 29–33 (2020).

    Article  Google Scholar 

  200. McKerrow, W. S., Niocaill, C. M. & Dewey, J. F. The Caledonian orogeny redefined. J. Geol. Soc. 157, 1149–1154 (2000).

    Article  Google Scholar 

  201. Haq, B. U. & Schutter, S. R. A chronology of Paleozoic sea-level changes. Science 322, 64–68 (2008).

    Article  Google Scholar 

  202. Kelly, S. B. & Olsen, H. Terminal fans — a review with reference to Devonian examples. Sediment. Geol. 85, 339–374 (1993).

    Article  Google Scholar 

  203. Kenrick, P. & Strullu-Derrien, C. The origin and early evolution of roots. Plant Physiol. 166, 570–580 (2014).

    Article  Google Scholar 

  204. Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685–1695 (2012).

    Article  Google Scholar 

  205. Janikian, L. et al. Variability of fluvial architecture in a poorly vegetated Earth: Silurian sheet-braided and meandering ancestor river deposits recorded in northeastern Brazil. Terra Nova 32, 187–197 (2019).

    Article  Google Scholar 

  206. Chamberlin, E. P. & Hajek, E. A. Using bar preservation to constrain reworking in channel-dominated fluvial stratigraphy. Geology 47, 531–534 (2019).

    Article  Google Scholar 

  207. Ganti, V., Hajek, E. A., Leary, K., Straub, K. M. & Paola, C. Morphodynamic hierarchy and the fabric of the sedimentary record. Geophys. Res. Lett. 47, e2020GL087921 (2020).

    Article  Google Scholar 

  208. Brierley, G. J. & Hickin, E. J. Channel planform as a non-controlling factor in fluvial sedimentology: the case of the Squamish River floodplain, British Columbia. Sediment. Geol. 75, 67–83 (1991).

    Article  Google Scholar 

  209. Ethridge, F. G. in From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation Special Publication 97 (eds Davidson, S., Leleu, S. & North, C. P.) 9–35 (SEPM, 2011).

  210. Fielding, C. R., Alexander, J. & Allen, J. P. The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sediment. Geol. 365, 1–20 (2018).

    Article  Google Scholar 

  211. Horn, J. D., Joeckel, R. M. & Fielding, C. R. Progressive abandonment and planform changes of the central Platte River in Nebraska, central USA, over historical timeframes. Geomorphology 139–140, 372–383 (2012).

    Article  Google Scholar 

  212. Ielpi, A., Lapôtre, M. G. A., Finotello, A. & Ghinassi, M. Planform-asymmetry and backwater effects on river-cutoff kinematics and clustering. Earth Surf. Process. Landf. 46, 357–370 (2021).

    Article  Google Scholar 

  213. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  Google Scholar 

  214. Petsch, S. T. in Treatise on Geochemistry (eds Holland H. D. & Turekian K. K.) 217–238 (Elsevier, 2014).

  215. Dahl, T. W. & Arens, S. K. M. The impacts of land plant evolution on Earth’s climate and oxygenation state — An interdisciplinary review. Chem. Geol. 547, 119665 (2020).

    Article  Google Scholar 

  216. Blair, N. E. et al. The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta 67, 63–73 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

A.I. is sponsored by a Discovery Grant from the Natural Sciences and Engineering Resource Council of Canada. The authors acknowledge W. J. McMahon for his comments on an early draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.I. led the conceptualization, data curation, writing and figure drafting; M.G.A.L., M.R.G. and C.K.B. supported, in equal parts, the conceptualization, data curation, writing and figure drafting.

Corresponding author

Correspondence to Alessandro Ielpi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks M. Santos, S. Opluštil and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ielpi, A., Lapôtre, M.G.A., Gibling, M.R. et al. The impact of vegetation on meandering rivers. Nat Rev Earth Environ 3, 165–178 (2022). https://doi.org/10.1038/s43017-021-00249-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00249-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene