Table 8.1 Principal Classes of Sensory Proteins in Escherichia coli K12 | Sensor type | No. | Function | Signaling mechanism | |-------------------------------------|--------------------|---|--| | Histidine kinase | 30 | Transcriptional regulation, control of other processes | Phosphorylation of the REC domain of various response regulators | | Methyl-accepting chemotaxis protein | 5 | Chemotaxis | Interaction with histidine
kinase CheA, chemotaxis
response regulator CheY | | Ser/Thr protein
kinase | 1 + 1 ^a | Transcriptional regulation, posttranslational regulation | Phosphorylation of Ser or Thr residues in target proteins | | Ser/Thr protein phosphatase | 2 | Same as above | Dephosphorylation of Ser/Thr protein kinases or other target proteins | | PTS membrane component | 23 | Sugar transport,
chemotactic
signaling,
regulation of
adenylate cyclase
activity | Direct effect on chemotaxis,
most likely through direct
interaction of PTS enzyme I
with the histidine kinase
CheA | | Adenylate cyclase | 1 | Global regulation of transcription | Synthesis of cAMP | | Diguanylate cyclase | 12+7 ^b | Regulation of protein and polysaccharide secretion | Synthesis of c-di-GMP | | c-di-GMP-specific phosphodiesterase | $10+7^{b}$ | Same as above | Hydrolysis of c-di-GMP | ^a While YegI is believed to function as a Ser/Thr kinase, it remains unclear whether UbiB is an enzyme of ubiquinone biosynthesis or a Ser/Thr kinase that regulates this pathway (see the text for details). ^b Seven *E. coli* K12 proteins contain both GGDEF and EAL domains and could potentially catalyze both synthesis and hydrolysis of c-di-GMP (see the text for details).