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ABSTRACT

Motivation: Recent studies suggested that a combination of multiple
single nucleotide polymorphisms (SNPs) could have more significant
associations with a specific phenotype. However, to discover
epistasis, the epistatic interactions of SNPs, in a large number
of SNPs, is a computationally challenging task. We are, therefore,
motivated to develop efficient and effective solutions for identifying
epistatic interactions of SNPs.
Results: In this article, we propose an efficient Cloud-based
Epistasis cOmputing (eCEO) model for large-scale epistatic
interaction in genome-wide association study (GWAS). Given a large
number of combinations of SNPs, our eCEO model is able to
distribute them to balance the load across the processing nodes.
Moreover, our eCEO model can efficiently process each combination
of SNPs to determine the significance of its association with the
phenotype. We have implemented and evaluated our eCEO model
on our own cluster of more than 40 nodes. The experiment results
demonstrate that the eCEO model is computationally efficient,
flexible, scalable and practical. In addition, we have also deployed
our eCEO model on the Amazon Elastic Compute Cloud. Our study
further confirms its efficiency and ease of use in a public cloud.
Availability: The source code of eCEO is available at
http://www.comp.nus.edu.sg/~wangzk/eCEO.html.
Contact: wangzhengkui@nus.edu.sg
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1 INTRODUCTION
It is becoming increasingly important and challenging in genome-
wide association study (GWAS) to identify single nucleotide
polymorphisms (SNPs) associated with phenotypes such as
human diseases (e.g. breast cancer, diabetes and heart attacks).
Traditionally, researchers focused on the association of individual
SNPs with the phenotypes. Such methods can only find weak
associations as they ignore the genomic and environmental context
of each SNP (Moore and Williams, 2009). However, SNPs may
interact (known as epistatic interaction) and jointly influence
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the phenotypes. As such, there has been a shift away from the
one-SNP-at-a-time approach toward a more holistic and significant
approach that detects the association between a combination of
multiple SNPs with the phenotypes (Moore et al., 2010).

In the meantime, the number of discovered SNPs is becoming
larger and larger. For example, the dataset from the Hapmap project
(Frazer et al., 2007) contains 3.1 million SNPs and the 1000
genome project (Durbin et al., 2010) provides ∼15 million SNPs.
From a computational perspective, it is very time consuming to
determine the interactions of SNPs. Given n SNPs, the number of
k-locus is nCk = n!

k!(n−k)! . This renders existing statistical modeling

techniques (which work well for a small number of SNPs) (Park and
Hastie, 2008; Wu et al., 2009, 2010; Yang et al., 2010) impractical.
Likewise, techniques that enumerate all possible interactions (Wan
et al., 2010; Zhang et al., 2010) are not scalable for a large number
of SNPs. To reduce the computation overhead, heuristics (Park and
Hastie, 2008; Wu et al., 2009, 2010) have also been developed.
These schemes add a filtering step to select a fixed number of
candidate epistatic interactions and fit them to a statistical model.
However, these approaches risk missing potentially significant
epistatic interactions that may have been filtered out. Therefore,
a scalable and efficient approach becomes attractive for such a
computationally intensive task in a large-scale GWAS.

A promising solution to the computation challenge is to exploit
parallel processing. There are a variety of high-performance
computing solutions. For example, in Ma et al. (2008), a tool is
provided for processing single-locus and two-locus SNPs analyses
using a supercomputer. However, it is not easy for researchers to
rewrite their own programs on specialized hardware. As another
example, in Greene et al. (2010), two-locus SNPs analysis is
performed using the graphics processing units (GPU). However,
this requires the users to understand the GPU architecture well
to fully exploit the computation power of the GPU. Instead, we
aim to develop a cloud-based solution which has a number of
benefits. First, the MapReduce framework (available in most cloud
services) offers high scalability, ease of programming and fault
tolerance. Secondly, most software can be easily deployed on the
cloud and made accessible to all. Thirdly, there are already low-
cost commercially available cloud platforms [e.g. Amazon Elastic
Compute Cloud (Amazon EC2)]. Fourthly, the pay-as-you-use
model of such commercial platforms also makes them attractive
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for end-users who need not own, manage and (over-)provision any
computational resources.

Finding significant epsitatic interactions of SNPs involves two
major computational challenges:

(1) Given a large number of combinations of SNPs, how can we
distribute them across multiple processing nodes effectively
to achieve load balancing?

(2) Given a single combination of SNPs, how can we
efficiently compute the significance of its association with
the phenotype?

In this article, we propose an efficient Cloud-based Epistasis
Computing (eCEO) model to find statistically significant epistatic
interactions. Our eCEO model is based on Google’s MapReduce
framework (Dean et al., 2004), and is implemented over Hadoop,
an open-source equivalent implementation of the MapReduce
framework. We develop solutions for the two computational
challenges mentioned above. For the first challenge, we develop and
study two approaches to distribute a large number of combinations
of SNPs across processing nodes—a Greedy model and a Square-
chopping model. For the second challenge, we adopt a Boolean
operation approach, which is similar to the method used in Wan
et al. (2010), and other optimizations.

We apply our solutions for determining significant interactions for
two loci and three loci as well as retrieving the top-k most significant
answers. As a first cut, we have adopted a brute force approach that
examines all possible interactions among the SNPs. This ensures
that we do not miss any statistically significant interactions. Our
method can be easily extended to deal with heuristics approaches.
We validate our proposed eCEO model on our local cluster of over
40 nodes and on a public cloud (i.e. Amazon EC2). Our results
show that our eCEO model is efficient, and that the MapReduce
framework can be effectively deployed for bioinformatics research
such as the GWAS.

A preliminary version of this article appears in Wang et al. (2010).
There, we developed the CEO model where we design the Greedy
parallel distribution approach to tackle the first challenge and adopt
a naive solution for the second challenge. Here, we extended CEO
in several directions that significantly improves its performance.
First, we design a Square-chopping parallel distribution approach
for the first challenge. Secondly, we develop efficient solutions for
the second challenge in our eCEO model. Our experimental study
in this article shows that eCEO outperforms CEO by a wide margin.
For example, the experiment result shows that the execution time
for processing 500 000 SNPs in a 43-node cluster is reduced from
around 25 to 30 days using CEO model to 9 h using eCEO model.
Thirdly, our eCEO model supports four test statistics to measure the
significance of the association between a combination of SNPs and
the phenotype; and users can choose an appropriate one that meets
their needs. Fourthly, we show how easy it is to use our model in a
public cloud.

The rest of this article is organized as follows. Section 2 provides
some background knowledge. In Sections 3, and 4, we present our
solutions to address the two computational challenges for finding
significant epistatic interactions. In Section 5, we report results of
a performance study on our own cluster and Amazon EC2. We also
present an efficient approach to retrieve the top-k most significant
answers. Finally, we discuss and conclude this article in Section 6.

2 BACKGROUND

2.1 The MapReduce framework
MapReduce architecture: under the MapReduce framework, the
system architecture of a cluster consists of two kinds of nodes,
namely the NameNode and DataNode. The NameNode works as
a master of the file system, and is responsible for splitting data into
blocks and distributing the blocks to the data nodes (DataNodes)
with replication for fault tolerance. A JobTracker running on the
NameNode keeps track of the job information, job execution and
fault tolerance of jobs executing in the cluster. A job may be split
into multiple tasks, each of which is assigned to be processed at a
DataNode.

The DataNode is responsible for storing the data blocks assigned
by the NameNode. A TaskTracker running on the DataNode
is responsible for task execution and communication with the
JobTracker.

MapReduce computational paradigm: the MapReduce
computational paradigm exploits parallelism by dividing a
processing job into smaller tasks, each of which runs on a
processing node. The computation of MapReduce follows a fixed
model with a map phase followed by the reduce phase. The
MapReduce library is responsible for splitting the data into
chunks and distributing each chunk to the processing units (called
mappers) on different nodes. The mappers process the data read
from the file system and produce a set of intermediate results which
are shuffled to the other processing units (called reducers) for
further processing. Users can set their own computation logic by
writing the map and reduce functions in their applications.

Map phase : the map function is used to process the (key,value)
pairs (k1,v1) that are read from data chunks. Through the map
function, the input set of (k1,v1) pairs are transformed into a new set
of intermediate (k2,v2) pairs. The MapReduce library will sort and
partition all the intermediate pairs and pass them to the reducers.

Shuffling phase : the partitioning function is used to partition the
emitted pairs from the map phase into M partitions on the local
disks, where M is the total number of reducers. The partitions are
then shuffled to the corresponding reducers by the MapReduce
library. Users can specify their own partitioning function or use the
default one.

Reduce phase : the intermediate (k2,v2) pairs with the same key
that are shuffled from different mappers are sorted and merged
together to form a values list. The key and the values list are fed to
the user-written reduce function iteratively. The reduce function
operates on the key and values to produce a new (k3,v3) pairs. The
resultant output (k3,v3) pairs are written back to the file system.

2.2 Statistical significance of SNP combinations
Typically, a GWAS uses two types of data—genotype data that codes
the genetic information of each individual, and phenotype data that
measures the individual’s quantitative traits. For simplicity, we use
the genotype data which is biallelic (i.e. a locus has allele A and
T which can form three types of genotypes, AA, AT and TT) and
is encoded as 0, 1 and 2 in the raw data. For phenotype data, we
consider the binary form (0 for control and 1 for case). Our model can
handle other types of genotype and phenotype data also. Figure 1a
shows an example of the raw data format for a dataset with eight
individual samples and six SNPs. Each row contains the individual
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Fig. 1. (a) The raw data format with six SNPs from eight individual samples; (b1) the data format after preprocessing with sample id list in CEO model; (c1)
illustrates the hashing method for finding the intersection between two lists of sample ids in CEO model—one is sample id list from the SNP 1 whose PT
and GT are 0 and 1, the other is the sample id list from the SNP 2 whose PT and GT are 0 and 0; (b2) the data format after preprocessing using bit strings
representation in eCEO model; (c2) illustrates the way of finding the intersection from two lists with bit strings in eCEO model.

sample information of raw data. The first and last columns are the
sample id and phenotype. The rest of the columns are the genotype
of each SNP.

The goal of our research is to identify a set of most significant
combinations of multiple SNPs (epistatic interactions) that correlate
to the phenotype. To measure the significance of the association
between k-locus SNPs and phenotype in our eCEO model, we have
implemented four test statistics namely, χ2 test, likelihood ratio,
normalized mutual information and uncertainty coefficient. Users
can choose any of these based on their preferences and needs. As
our eCEO framework assumes no statistical model fitting and is thus
parameter free, these measures are effective in capturing interactions
of arbitrary order. Due to space limitation, we shall focus on the χ2

test (Balding et al., 2006), which is used as the default in eCEO, in
the following discussion.

Take two-locus epistatic interactions as an example. Let n0(j,k)
denote the number of samples in the control group whose first locus’s
genotype code is ‘j’ and second locus’s genotype code is ‘k’, where
j and k take on values 0, 1 or 2. Likewise, we can denote n1(j,k) for
the case group. For two locus, with these two groups of information,
we can derive a 2×9 contingency table. We can calculate the χ2 test
value of this epistatic interaction from this contingency table using
the following formula:

χ2 =
1∑

i=0

2∑

j=0

2∑

k=0

(ni(j,k) −nin(j,k)/n)2

nin(j,k)/n

Where n=∑1
i=0

∑2
j=0

∑2
k=0ni(j,k), ni =

∑2
j=0

∑2
k=0ni(j,k), and

nj,k =∑1
i=0ni(j,k).

The null hypothesis behind the χ2 test is that there is no
association between two locus epistatic interaction and phenotype.
As the χ2 test statistic follows the χ2 distribution, the corresponding
significance level can be obtained after Bonferroni correction.
The lower the value is, the more confident we are to reject the
null hypothesis. The resultant P-value for the two-locus epistatic
interaction can be obtained as P(x>C) where C is the χ2 test value,
and P(x) is the probability at value x under the χ2 distribution.
The above expressions can be easily generalized for three-locus
interaction. We shall omit that due to space constraints.

3 EFFICIENT ALGORITHM FOR FINDING THE
ASSOCIATION SIGNIFICANCE

For our scheme to work, the raw data has to be preprocessed to collect
the single SNP information in a new data format (to facilitate MapReduce
processing). The straightforward way, which is adopted in our CEO
model (Wang et al., 2010), is to reorganize the data into the format of
<SNPi,PT ,GT ,list(sampleID)> where SNPi, PT and GT are the i-th SNP,
phenotype value and the SNP genotype, respectively. list(sampleID) stores
all the sample ids in the dataset whose phenotype and SNP genotype on the
SNPi are PT and GT , respectively. Figure 1(b1) depicts the transformed data
from the raw data in Figure 1a. The single SNP information can be sent to
different processing nodes to calculate the χ2 test value by collecting the
contingency table from the combination of multiple SNPs. Let us still take
two locus as an example. In order to collect the contingency table, the first
step is to calculate the ni(j,k) from the single SNP information. If we want to
calculate the ni(j,k) for the pair of SNP x and SNP y, we need the information
from <x,i,j,list1(sampleID)> in SNP x and <y,i,k,list2(sampleID)> in
SNP y. We can derive ni(j,k) from the intersection between the two sample id
lists. This can be easily done as follows: first, we build a hash table for the
sample ids in the first list; secondly, we use the sample ids in the second list
to probe the hash table for matching sample ids. For example, to get n0(1,0)

for the pair of SNP 0 and SNP 1, we intersect the two sample lists as shown
in Figure 1(c1). However, our preliminary study suggests that using such an
approach to collect the contingency table is computationally expensive.

In our eCEO model, we adopt an alternative approach. Instead of storing
the sample ids in the list, we use a n-bit bit string to capture the sample
ids, where n is the total number of samples. Each position in the bit string
corresponds to a sample id. For example, from right to left, the first bit in the
bit string corresponds to the sample with id 1, the second bit corresponds to
the sample with id 2 and so on. If the sample id is in the list, its corresponding
position will be set to 1, otherwise, it will be set to 0. Therefore, in our system,
the new transformed data are represented as bit strings as in Figure 1(b2).
With such a representation, we can perform an AND operation on the two bit
strings to find the intersection between them more efficiently. We can easily
get the number of intersection samples from counting the 1’s bits from the
AND result. Figure 1(c2) depicts calculating n0(1,0) for the pair of SNP 0 and
SNP 1 using bit strings. This method provides a more cpu-efficient way of
collecting the contingency table.

To further improve performance, we incorporate several optimizations in
our eCEO model. (i) We use the mutable decoding scheme in our system.
From our observation, immutable decoding of objects from the key/values
into Java objects, used in the CEO model, is a time-consuming operation
since it needs to create a unique Java object for each object in the key/values.
For example, parsing 10 objects in each record for one million records needs
to generate ten million immutable objects! With mutable decoding scheme,
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Fig. 2. Data format in bytes. J, 1, 1, K bytes are used to store the SNP ID,
phenotype, genotype and the bit string of the sample id list. User can choose
the value of J and K according to their data size.

we can reuse 10 mutable Java objects. Therefore, no matter how many records
are decoded, only 10 objects are created and reused. (ii) We store all the data
information into bytes including the SNP id, genotype, phenotype and bit
strings as shown in the Figure 2. This follows from our observation that it
is time consuming to use Java string split function to split the objects in a
record. We parse the objects in a record by directly fetching from the bytes
records. (iii) We write our own algorithm to count the intersection of the 1’s
bits without using the Java API.

4 PARALLEL DISTRIBUTION MODEL

4.1 Two-locus epistatic analysis
For two-locus epistatic analysis, we aim at finding statistically significant
interaction among all SNP pairs. For each pair of SNP combination,
the P-value is computed (as described in Section 2.2) to determine its
significance. For N SNPs in the dataset, we need to calculate N(N−1)

2 two-
locus SNPs combinations, as depicted in Figure 3a. Each row represents a
subset of SNP-pair computations where the starred node has to be paired up
with a circled node. Thus, row 1 has (N −1) pairs, row 2 has (N −2) pairs
and so on.

Our goal essentially is to split these N(N−1)
2 pairs of SNPs across all nodes

to be processed in parallel. We have two issues to address here: (i) how do we
split the SNP pairs across all nodes? (ii) how to perform two-locus analysis
under the MapReduce framework?

We shall first look at issue (i). Given N SNPs and M reducers, a
naive approach is to simply distribute approximately equal number of rows
to each reducer. This is depicted by the square brackets on the LHS of
Figure 3a where the first N

M rows are assigned to the first reducer, the next
N
M rows are assigned to the second reducer and so on. Here, the number
of SNP-pairs can be easily determined without any additional metadata, e.g.
for row 1, we know that we need to pair up SNP1 (starred node) with all other
remaining SNPs (circled node), resulting in (N −1) pairs. However, such a
naive solution will result in load imbalance as some reducers are more
heavily loaded than others, e.g. reducer one is likely to be a bottleneck.
To achieve better load balancing, we propose two load-balanced solutions in
this article:

Greedy model: ideally, each reducer should process N(N−1)
2M SNP pairs.

Therefore, starting from the first row, we seek to allocate consecutive rows to
a reducer such that the total number of SNP pairs for these rows is closest
to N(N−1)

2M . In Figure 3a, the square brackets on the RHS show that, under the
greedy scheme, each reducer may be assigned different number of rows
to process. However, the computation task in each reducer is about the
same. From our experimental results, we can see that our Greedy model has
almost linear speed up when adding more resources which shows that our
Greedy model is nearly load balanced.

Square-chopping model: under the Greedy model, the granularity of
distribution of computation pairs is a single row. In some cases, if users
have plenty of resources to use, they may want to reduce the number of
computation pairs in each reducer further. Our Square-chopping model,
which is an adaptation of the scheme in Ma et al. (2008), can be used in
these scenarios. Instead of sending the combination pairs according to rows,
we distribute them by ‘square chopping’ as shown in Figure 3a. This can
be achieved by dividing N SNPs into m subsets evenly. Each subset has n
SNPs where n equals N

m . For simplicity, n is assumed to be integer. Then we
assign any two subsets into one reducer. As shown in Figure 3a, each off-
diagonal reducer receives n2 combination pairs and each diagonal reducer

receives n(n+1)
2 combination pairs. Therefore, this scheme needs m(m+1)

2
reducers.

We are now ready to look at issue (ii), i.e. performing two-locus analysis
in MapReduce framework. Without loss of generality, let us assume we have
M reducers. Under the MapReduce framework, the mapper essentially
determines the reducer in which a SNP pair should be sent to, and the
reducer computes the statistical significance of each SNP pair allocated.
Figure 3b shows how the eCEO model processes the data having six SNPs.

Map phase: each mapper reads a chunk of the input (preprocessed) data.
For each SNP, it then determines the reducerswith which this SNP should
be shuffled to. We shall discuss how the reducers are determined later.
It suffices now to assume that this information is available to the mapper.
We note that one SNP information may be shuffled to multiple different
reducers. For example, in Figure 3a, SNPN needs to be shuffled to all
the reducers. This, unfortunately, is not supported by the MapReduce
framework which allows only one output (key,value) pair emitted from a
mapper to be shuffled to one reducer.

We resolve this problem by replicating and emitting as many copies
of a SNP as required. In addition, each such pair is ‘tagged’ with the
corresponding reducer identifier to distinguish the reducer that the pair
should be shuffled to. In other words, for each reducer for which an SNP,
SNPi, should be shuffled to, we generate and emit a (key,value) pair where
key is set as SNPi.reducer_marker (reducer_marker is the identifier of the
reducer that this SNPi should be shuffled to), as shown in the Figure 3b
subgraph (2), and value contains the rest of the SNP information including
the genotype, phenotype and the bit string representing the sample id list. In
this way, all the output (key,value) pairs with the same reducer_marker are
shuffled to the same reducer.

Shuffling phase: we write our own partitioning function to parse the
reducer_marker in the key and partition the emitted pairs to multiple
reducers.

Reduce phase: the MapReduce library sorts and merges the intermediate
result based on the key. The (key,value) pairs with the same key, are grouped
together as (key,set(values)) pair where set(values) is a set of values for that
key, as shown in Figure 3b subgraph (3). The (key,set(values)) pairs are
supplied to user’s reduce function in sorted order. Because all the keys at
the reducer have the same reducer_marker, the keys will be sorted
only based on the SNPi. Thus, the data for SNPi are sent to the reduce
function before those for SNPj where i< j. In the Greedy model, this means
that the starred nodes are supplied earlier than the circled nodes. Therefore,
in each reducer, only the starred nodes need to be cached in the main
memory. As the circled nodes are received, they can be immediately paired
up with the starred nodes to compute its P-value, after which the circled
nodes can be discarded. For the Square-chopping model, this guarantees
that information from one subset of SNPs will be supplied earlier than
another. Therefore, we only need to keep one subset of the SNPs information
in memory. As such, our eCEO model significantly reduces the memory
utilization.

In our processing model, the two-locus analysis finishes in one
MapReduce job.

4.2 Three-locus epistatic analysis
Three-locus epistatic analysis aims at finding statistically significant
interaction between three SNPs. Here, we propose one way of doing three-
locus epistatic analysis using the output of two-locus epistatic analysis.
Note that the output data of two-locus analysis are written to the file
system.

As what we have discussed before, from each row in Figure 3a, we can get
all the needed two-locus SNP combinations involving the starred node SNP.
Further, if we combine any two two-locus SNPs from one row, we can get all
possible three-locus SNPs involving the starred node SNP. Figure 4 shows an
example of finding all the three-locus SNPs with SNP1 using the two-locus
SNPs information from the first row in six SNPs example. In the same way,
all the possible three-locus SNPs involving SNPm can be generated from the
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(a) (b)

Fig. 3. Parallel distribution models and example of two-locus epistatic analysis using eCEO model.

Fig. 4. All the three-locus SNPs having SNP1.

combinations of two-locus SNPs of the row whose starred node is SNPm.
For three-locus epistatic analysis, the same processing model can be adopted
here. All the two-locus SNPs information which are derived from the same
row need to be processed in the same reducer to get all the three-locus
SNPs.

Map phase: the two-locus SNPs data are split into small chunks and each
chunk is assigned to each mapper by the MapReduce library. As what has
been mentioned above, the two-locus SNPs derived from the same row must
be shuffled to the same reducer. To achieve this, the key in the output
(key,value) pair from Map phase is set as SNPi.SNPj , where SNPi and SNPj

are the starred node and the circled node, respectively.
The advantage of setting the output key in this format is that, after sorting

the intermediate result according to the keys by MapReduce library, all the
two-locus SNPs from one row can be grouped closely and fed into the
reduce function continuously. In the reduce phase, after processing all
the two-locus SNPs from one row, the data can be discarded from the memory
to minimize the memory utilization.

Shuffling phase: our specified partitioning function is used to partition the
pairs according to SNPi value in the integer part of the key. The intermediate
result from the mappers with the same SNPi will be shuffled to the same
reducer.

Reduce phase: after sorting and merging the intermediate result, the
two-locus SNPs information with smaller starred node will be supplied
to the reduce function earlier than the others. Combining any two two-
locus SNPs at the reducer, we get the three-locus SNPs and calculate its
statistical significance. The result is then output to the file system.

The load balancing algorithm can also be used here for optimization.
Three-locus analysis can be performed using one MapReduce job using the
two-locus SNPs data.

5 RESULTS
Apache Hadoop is an open-source equivalent implementation of the
MapReduce framework, running on Hadoop distributed file system
(HDFS). We conduct a series of experiments on our local cluster with
over 40 nodes, and a public cloud environment, Amazon Elastic
Compute Cloud (Amazon EC2). For our local cluster, each node
consists of a aX3430 4(4) @ 2.4 GHz CPU running Centos 5.4
with 8 GB memory and 2x 500G SATA disks. For Amazon EC2,
we use 20 extra large instances, each with 8 EC2 Compute Units (4
virtual cores with 2 EC2 Compute Units each), 15 GB of memory
and 1690 GB of local instance storage running on a 64-bit platform.
Moreover, since our tasks at hand are computationally intensive, we
set the number of reducers per node to be equal to the number
of cores at the node, which is 4 in our local cluster and 8 in EC2
instances. This guarantees that each reducer can get one core.
Therefore, there are a total of 4*N and 8*N reducers which can
be run simultaneously on a N-node local cluster and EC2 clusters,
respectively.

Effect of number of reducers: for Hadoop application, a user can
specify the number of reducers to be used in one job. Because we
have preconfigured the total number of reducers to be 4*N for a
N-node cluster, this may require multiple phases to complete a job.
For example, if N = 30, then by specifying 120 reducers in one
job, we can complete it in one phase; with 360 reducers, it will
then take three phases to complete the job. Our first experiment is to
investigate the optimal number of reducers that should be set for
one job based on a given cluster size. This experiment is conducted
with a 50 000 SNPs dataset on a local 30-node cluster. Note that all
the datasets we used include 2000 samples.

Figure 5a presents the running time for the Greedy model.
As shown, there is a certain optimal number of reducers that
should be used. When the number of reducers is too small,
the computation resources are not fully utilized. On the other
hand, when the number of reducers is too large, the processing
may require multiple phases that increases the communication
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a–d) are the evaluation results for two-locus epistatic analysis on own local cluster. (e) The performance evaluation result for three-locus epistatic
analysis on our own cluster. (f) The performance study on Amazon EC2.

overhead. We note that the Greedy model is optimal when the
number of reducers corresponds to the actual configured value
(i.e. 120).

Figure 5b presents the running time for the Square-chopping
model. Here, the 50 000 SNPs are evenly split into 10, 16, 20,
25 and 40 partitions corresponding to 55, 136, 210, 325 and 820
reducers needed. From the results, we observe that when the reducer
number is close to a multiple of N, where N is the total number of
reducers configured in the cluster, its performance is good; otherwise
(N −R%N), reducers in the last phase, where R is the reducer number
set in the job, will be wasted.

Looking at the results for the Greedy and the Square-chopping
models, we observe that the Square-chopping model is generally
inferior to the Greedy model. This is because of wasted reducers
in the last phase (as discussed above). Its performance, however, is
closer to the Greedy model as the partition number increases because
the task in each reducer is smaller, and hence the wasted reducers in
the last phase will not affect the total performance so much. Based
on these results, for the subsequent experiments, we only use the
Greedy model.

Scalability: first, we study the scalability of the eCEO model as
the system resources increase. Figure 5c shows the completion time
to analyze 50 000 SNPs as the cluster sizes increases from 10 to 40
nodes. The reducer numbers in each job are set as 40, 80, 120
and 160, respectively. From the result, we can see that completion
time reduces with increasing number of nodes. In fact, we observe

a (almost) linear speedup in performance. When we double the
resources, the execution time reduces by half.

Now, let us consider the scalability of eCEO as the number
of SNPs increases. Figure 5d shows the processing time for
exhaustively computing all the significant interactions for two locus
with 50 000, 100 000, 200 000 and 500 000 SNPs on a local 43-
node cluster, and output the results whose P-values are smaller
than 0.05. We made two interesting observations. First, the result
shows that our eCEO offers a feasible and practical solution to
perform pairwise epistasis for a large number of SNPs. According
to Ma et al. (2008), it would require 1.2 years to do the pairwise
epistasis testing of 500 000 SNPs using the serial program on a
2.66 GHz single processor without parallel processing. Our eCEO
model can accomplish this task in not more than 9 h using only a 43-
node cluster. Second, we note that the processing time is essentially
proportional to the number of interacting SNP pairs to be evaluated.
For example, the number of SNP pairs for the 500 000 SNPs dataset
is 100 times more than that for the 50 000 SNPs dataset, and 6 times
more than that for the 200 000 SNPs dataset. The running time for
the 500 000 SNPs dataset (∼538 min) is no more than 100 times that
of the 50 000 SNPs dataset (∼7 min), and is ∼5 times more than the
200 000 SNPs dataset (∼109 min).

Performance comparison between CEO and eCEO models: we
also evaluate CEO’s scalability with respect to the number of SNPs.
The result is shown in Figure 5d. Clearly, eCEO outperforms CEO
by a wide margin. We did not run the experiments for 200 000 and
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500 000 SNPs in the CEO model because it will take a long time—
we estimated the execute time for 500 000 SNPs to be roughly 25–30
days. But our eCEO model only needs 9 h to complete. We expect
our eCEO model to be able to process 1 million SNPs in around
10 h on a 200-node cluster. The results confirm that our various
optimizations are effective and efficient, and that our eCEO model
is a practical and effective solution for processing large number of
SNPs.

Three-locus analysis: we also evaluate the performance of three-
locus analysis on a 43-node local cluster. We output all the two-locus
analysis result and then perform the three-locus analysis. The result
is presented in Figure 5e for SNP sizes of 2000, 3000, 4000 and
5000. We observe that the running time is also proportional to the
number of SNP triples. This confirms that the eCEO scheme can
effectively balance the load across all nodes.

Top-k retrieval: in our system, we store the results of the two-
locus and three-locus analysis in HDFS to allow users to do further
analysis. One important function that we can further provide is to
allow users to retrieve only the top-k most significant results with
the lowest P-values. We have also provided such a capability in our
system under the MapReduce framework. The basic idea is to split
the output of the two/three-locus analysis into chunks. Each chunk
is then assigned to one mapper. Next, each mapper will select the
top-k most significant pairs/triples and shuffled these results to one
reducer. Finally, the reducer can determine the global top-k
answers based on all local top-k ones it receives. Our top-k scheme
is very efficient. For example, retrieving the top 10 most significant
SNPs information from the two-locus output (with size of 56 GB)
only takes 145 s in the 43-node cluster.

Evaluation on and experience with a Public Cloud: eCEO is
developed with the intention for users to exploit cloud computing for
epistasis analysis. As such, we also evaluate our Greedy model on
a public cloud, namely, Amazon EC2. Our quota of using Amazon
EC2 instances in our research grant is 20. We use 20 extra large
instances in our experiments, including 1 master node and 19 slaves
nodes. There are 19 computation nodes in this experiment. Figure 5f
shows the execution time for two-locus analysis as we vary the
number of SNPs from 50 000 to 500 000. From the results, we can
see that the execution time is essentially proportional to the number
of interacting SNP pairs as we observed in our local cluster.

Our experience with Amazon EC2 shows the ease in which we
can deploy our eCEO model. In fact, in the Hadoop package that we
use, it provides tools to launch Amazon EC2 cluster with Hadoop
directly. Therefore, we do not need to make any changes to our
code. We do not even need to set up Hadoop at all. Once we
launch the cluster in Amazon EC2, we simply upload our eCEO
program and run it. With many cloud providers offering services to
use MapReduce program directly (such as Amazon EC2, Amazon
Elastic MapReduce and so on), our eCEO model is an important
tool for large-scale epistasis analysis on a public cloud.

6 CONCLUSION
This article aims at providing an efficient epistasis computing
model for large-scale epistatic interaction in GWAS which can
be run on a computing cluster (local or cloud-based). We have
proposed an efficient and feasible solution, called eCEO based on the

MapReduce framework. As such, eCEO inherits the nice properties
of MapReduce, which is high scalability and good fault tolerance.
Moreover, it can leverage cloud computing with almost unlimited
elastic computing resources. We have demonstrated the practical
advantage of using eCEO model to exhaustively search two-locus
and three-locus epistatic interactions. Our eCEO model can also
retrieve top-k most significant interactions. We have conducted
extensive experimental study on a local cluster of over 40 nodes and
20 instances on Amazon EC2. The results showed that our eCEO
model is computationally efficient, flexible, scalable and practical.
As future work, we plan to implement more test statistics. We also
plan to explore the possibility of integrating eCEO as a filtering step
to other methods, e.g. those based on statistical model fitting. Finally,
we plan to develop pruning strategies based on domain knowledge,
and integrate these into our scheme. For example, by knowing that
certain SNPs do not interact, their computations can be avoided
totally.
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