
Scalability

Set Amazon’s Servers on Fire, Not Yours

Parks Hall Fire, July 3, 2002 - http://www.acadweb.wwu.edu/dbrunner/

1
Managing hardware in our datacenter is a pain. We do it because it’s a necessary evil. Amazon’s starting to abstract some of that away via APIs - and I’m thrilled.

http://www.acadweb.wwu.edu/dbrunner/
http://www.acadweb.wwu.edu/dbrunner/
http://www.acadweb.wwu.edu/dbrunner/
http://www.acadweb.wwu.edu/dbrunner/

Why trust us?

 Bootstrapped.

 Profitable.

 No debt.

 140M photos.

 192TB at S3.

 Doubling yearly.

2
SmugMug’s a bunch of green-haired freaks, right? Yes, but we also know a lot about storage, and doing it cheaply.

http://www.smugmug.com/aboutus/aboutus.mg
http://www.smugmug.com/aboutus/aboutus.mg

Why trust us?

 Bootstrapped.

 Profitable.

 No debt.

 140M photos.

 192TB at S3.

 Doubling yearly.

 Super Heroes.

3
Oh, yes, and we’re also Super Heroes. :)

http://cmac.smugmug.com/gallery/2504559%23131487110
http://cmac.smugmug.com/gallery/2504559%23131487110

Biz Stuff

SmugMug’s Founders

4
The presentation is broken into two parts - Biz & Geek. This is the Biz section.

http://cmac.smugmug.com/gallery/2504559
http://cmac.smugmug.com/gallery/2504559

Our Love Affair with S3

5
It’s no secret that we love S3. But, like all good love affairs, it has it’s ups and downs. :)

http://macaskill.smugmug.com/
http://macaskill.smugmug.com/

Our Love Affair with S3

 Always on, global, infinite storage.

 Inexpensive. $0.15/GB/month w/replicas.

 Easy. REST API. (SOAP too, but...)

 Fast. Not 15K-SCSI fast, but Internet fast.

 Game changer.

6
S3, or Simple Storage Service, solves a huge chunk of our storage problems. The CEO in me thinks I should keep my mouth shut, since it really levels the playing field, but the geek in me
just thinks it’s too cool. :)

Amazon? Infrastructure?

Photo by Bob Knight - http://bobknight.smugmug.com/
7

Amazon’s just a book store, right? Wrong.

http://bobknight.smugmug.com/gallery/644691%2350259124
http://bobknight.smugmug.com/gallery/644691%2350259124
http://bobknight.smugmug.com
http://bobknight.smugmug.com

Amazon? Infrastructure?

 Started with books.

 Soon added CDs & DVDs.

 Toys R Us, Borders, Target.

 zShops, Marketplace, E-Commerce API

 People building their businesses on Amazon is cool.

 What else do we have lurking in the corners?

8
I’m not totally sure how Amazon came up with AWS, but I’ll bet it went something like this. It sure makes sense that they began to like having businesses building on top of them and
their expertise. And I don’t buy the argument that this is silly because Amazon’s a bookseller. What a dumb argument. In reality, Amazon’s finding ways to monetize other things they
do well. More businesses should do this.

Why use them?

 Not a lot of web-scale expertise on Planet Earth.

 Reputation for systems.

 Once competed with Amazon - fatbrain {*}

 They eat their own dogfood. Dozens of products.

 Focus on the app, not the muck.

9
You can count the # of companies who do this on one, possibly two, hands. My father (SmugMug’s co-founder) competed directly with Amazon with his last company, fatbrain, so we
know just how talented they are at their business and their infrastructure. Amazon does use S3 and the other services themselves (and yes, when S3 has had problems, Amazon’s had
problems. I watched.)

Show me the money!

Photo by Kirk Tanner - http://kirktanner.smugmug.com/

10
Money doesn’t grow on trees, everyone knows that. But in this case, it’s pretty dang close.

http://kirktanner.smugmug.com/gallery/472343%2319167227
http://kirktanner.smugmug.com/gallery/472343%2319167227
http://kirktanner.smugmug.com
http://kirktanner.smugmug.com

Show me the money!

 Guesstimate: ~$500K saved per year.

 Actual:

 Growth: 64M photos -> 140M photos

 Disks would cost: $40K -> $100K/month.

 $922K would have been spent.

 $230K spent instead.

 $692K in cold, hard savings.

 Nasty taxes! $295K ‘saved’ in cash flow. Bonus!

 Reselling disks - recouping sunk cost.

11
Early on in S3, I estimated we’d save $500K. Here’s the latest hard numbers. We’ve been using S3 since April of 2006, so it’s nearly a year. Total saved? $692K. Plus we don’t have to
pre-pay some stupid taxes on the order of $295K. (Technically, not savings, because the gov’t would give it back to us over 5 years - but still, I’d like to keep that $295K, thanks). Plus
we’re actually thinking of re-selling some of the disks we had bought in the past, recouping some of our sunk costs.

$ sweet spots

 Perfect for startups & small companies.

 Ideal for ‘store lots, serve little’ businesses of all sizes.

 Not so great (yet?) for serving lots if you’re a medium
or large sized business. Transfer costs high if you can
buy bandwidth in 1 Gbps+ chunks.

 We’re a ‘store lots, serve lots’ company. What to do?

12
S3 is great if you’re a small company that can’t or won’t buy lots of bandwidth. It’s also great if you’re gonna just store a lot, but not read or write it often. Why? Because Amazon’s
storage rate ($0.15/GB/month) is fantastic, but the transfer rate ($0.20/GB) is merely competitive, rather than being fantastic. If you can buy bandwidth in 1 Gbps chunks, you can
probably save a few pennies doing it yourself.

Geek Stuff

Me with my NeXT gear on.5 of my employees.

13
I’ve been a geek for a long time. Here’s the photographic proof. I was probably 10 here. Oh, yes, and now we’re onto the geek half of the presentation. :)

http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854
http://mom.smugmug.com/gallery/202%236854

Like SmugFS

 Architecture remarkably similar to SmugFS.

 Similar to lots of startups.

 Stupid we’re all building the same thing.

 Easy to drop-in.

 Started on Monday, live in production on Friday.

14
We had our own redundant, replicated, reliable internal storage system, SmugFS. Lots of recent startups probably have similar architectures, and they’ve all likely just built it themselves.
It’s stupid we’re all building the same thing over and over. Amazon S3 saves everyone that step. It was super-easy to drop into our code because it was so similar to SmugFS already.
When I started writing the code on a Monday, we were live and in production the Friday of that week.

Our S3 evolution

 Started just doing secondary storage. Too cold!

 Tried out as Primary. Too hot!

 Finally, hot & cold model = Just right!

 Amazon gets 100% of the data.

 SmugMug keeps “hot” data local.

 95% reduction in # of disks bought.

15
We’ve played around with a few different models with S3. At first, they were just backup. They worked so well, we wanted to do more (and save more money), so we tried them as stand-
alone storage. That didn’t work quite as well when they had one of their hiccups, so we next tried a hot/cold model, which works really really well. Amazon is our primary storage, and
we use SmugFS as our local hot cache. We end up storing 100% of the data at Amazon, and 10% locally. In the end, we need 95% less disks in our datacenter than we did before.

Sample Request

Client ‘Smuggy’ -> www.smugmug.com
 “Hey, gimme photo 31337”

 www.smugmug.com -> SmugFS
 “Hey, you got photo 31337?”
 If YES, send to Smuggy.
 If NO:

 Log that it wasn’t in SmugFS for analysis.
 www.smugmug.com -> Amazon S3
 “Hey, you got photo 31337?”
 If YES, send to Smuggy.
 If NO:

 PANIC! :)

16
Here’s a sample request for a SmugMug photo. We rarely, if ever, get to PANIC stage, but I’m sure it could happen.

http://www.smugmug.com
http://www.smugmug.com
http://www.smugmug.com
http://www.smugmug.com
http://www.smugmug.com
http://www.smugmug.com

Proxy vs Redirect vs Direct Links

 Built SmugMug->S3 with multiple modes.

 Can flip a switch to change.

 Nearly 100% served are proxy reads.

 Sometimes HTTP redirects.

 Rarely direct S3 links.

17
We have three modes in SmugMug’s codebase, and can switch between them at will on-the-fly. We can proxy read from S3 and then serve it to the customer, we can send an HTTP
redirect to the S3 object, or we can embed real S3 urls (CNAME’d to smugmug.com) in our HTML. Almost 100% of our stuff is served via proxy read so we can try hitting our cache first
(saving on transfer costs to Amazon), make sure we have the permissions right, etc.

Permissions

 We have complicated permissions.

 Passwords, privacy, external links, oh my!

 Proxying allows strong protection.

18
We have a rich permissions model at SmugMug, and need to make sure all the permissions are intact when someone tries to view a photo. Proxying allows the strongest protection,
though HTTP redirects are also quite strong with time-expiring S3 URLs.

REST vs SOAP

 Love REST, hate SOAP.

 Lightweight.

 Nothing useful added with SOAP’s complexity.

19
REST is so simple, easy to develop for, human readable. I love it. I’m not a fan of SOAP, and in this case, SOAP adds nothing but complexity. Use it if SOAP is your thing, otherwise start
with REST.

Reliability

 Not 100%. Close, though.

 More reliable than SmugFS which is quite reliable.

 Lots of failure points:
 SmugMug’s datacenter
 Internet backbones
 Amazon’s datacenter

 No other software, hardware, or service we use is
100%, either.

20
Everything fails, and Amazon’s no exception. There are lots of pieces that could fail outside of Amazon’s control, too. In our experience, they’ve been quite reliable overall.

Handling failure

 Build from day one with failure in mind.

 Stuff breaks - try again.

 Writes fail? Write locally, sync later.

 Reads fail? Handle intelligently. Alerts?

21
Failure happens. Even if you’re not using Amazon, your gear will fail. Write your app to handle failure. In Amazon’s case, the easiest thing to do on a failed read or write is simply try
again a few times. If the write continues to fail, write it somewhere locally then asynchronously replicate it back up later. With reads, have a proactive failure plan in place.

Performance

 Fast for reads and writes. (XX Mbps)

 Mostly speed-of-light limited. (20-80ms)

 Parallel i/o for massive throughput. (XXX Mbps)

 Machine measurable, human indistinguishable.

22
S3 has been really fast for us. On single reads/writes, we get tens of megabits per second. It would likely be even faster except that our datacenters aren’t close to Amazon’s, so we have
to deal with internet latency. We do use lots of simultaneous reads & writes to get hundreds of megabits per second at any given time of the day. We did some blind taste tests with
customers in the US, on both coasts, who couldn’t tell the difference if they were viewing photos from SmugMug or directly from S3 - so the speed was measurable on a machine, but
humans couldn’t tell. It’s quite fast.

CDN?

 S3 isn’t a Content Delivery Network.

 It’s storage.

 No global locations (yet?).

 Limited edge caching.

 Future Amazon Web Service?

23
I get asked a lot if we use S3 as a CDN. We don’t, because it’s not a CDN. That’s not to say that Amazon’s not good for serving - it is. But if you really want edge caching with lots of
endpoints all over the world, well, that’s not what S3 was designed for. They don’t have global locations, they do limited edge caching, etc. It’s for storage and serving that storage. Treat
it like a single web cluster rather than a CDN. I would imagine this may be a future Web Service that Amazon would offer.

Store-and-forward vs Stream

 Two ways to serve your content.

 Store-and-forward
 Great resiliency.
 Poor performance (TTFB).

 Stream
 Poor resiliency.
 Great performance (TTFB)
 Do a quick HEAD first to verify.

24
When proxy reading, you can read the entire file, then re-serve to the customer, or you can stream the bytes through to the customer as they arrive from S3. Each has pros and cons.
With store-and-forward, you can re-read the bytes again if the first request fails. But you have a slower time-to-first-byte response. With streaming, you have no idea if all the bytes
safely made it to the customer, but you get a great time-to-first-byte response. We tend to issue a fast HEAD request first to SmugFS and/or S3 before doing the streamed GET so we can
verify the file is there, intact, and the right size & hash.

The Speed of Light Problem

 Amazon hasn’t solved faster-than-light data
transmission. Yet.

 Unavoidable - make sure your app can deal.

 Parallelized i/o can mask problem.

 Caching can help.

 Streaming can help.

25
Latency associated with the speed of light can’t be avoided. Write your app with it in mind. Try to parallelize reads/writes, try to cache, and try to stream reads to clients if you can.

Outages & Problems

 Not perfect. 5 major issues.

 3 outages (15-30 mins). 2 core switch failures and
one DNS problem. Amazon.com affected.

 2 performance degradations. One, our customer
noticed. Second, they didn’t.

 Not a big deal - everything fails. Expect it.

26
Amazon’s had 5 major issues in the last year. Not a bad track record for a new service. We expect them to fail, as we expect everything our own datacenter to fail, so we handled most of
these fairly well.

SLA, Service, & Support

 We don’t care about SLA, but you may.

 Service Support: One area where Amazon is weak.
 This is a utility.
 They need a service status dashboard.
 Pro-active customer notifications.
 Ability to get ahold of a human.

 Amazon.com’s customer service is good, AWS will
likely catch up.

27
They don’t have an SLA yet. We don’t care, but medium and large businesses probably do. Until then, you may be out of luck. They do need to do a better job at handling the service-as-
a-utility situation. With our bandwidth and datacenter providers, we get status updates and pre-announcements of software updates, possible service outages, etc. Amazon needs to do
a better job notifying their customers about these sorts of things. On the bright side, Amazon.com’s customer service is quite good, so AWS will likely catch up.

Saving our butts

 Knocked power out of ~70TB of storage. Oops!

 Moved datacenters during normal business hours,
customers not affected.

 Stupid bugs.

28
S3 has saved our butts a few times. My brother accidentally knocked out power to 70TB of storage once - no customers noticed, since it failed over to S3 automatically. We also managed
to move everything from one datacenter to another during normal business hours without any service interruptions. And finally, I’ve had some software bugs that we were able to repair
thanks to Amazon.

Misc Tips

 Use cURL
 Faster.
 More reliable.
 Storing vs Streaming is simple.

 Make stuff as async as possible
 Hides speed-of-light issue
 Hides or masks problems
 Fast customer response

29
If you can, use cURL to do your transfers. We tested a number of different built-in functions and libraries, and cURL is super-fast and reliable at setting up the HTTP connection. Also, in
your app, hide the S3 latency as much as you can by doing asynchronous background transfers. Don’t make your customers wait.

Flirting with the other services.

30
The other Amazon services are exciting, too, so we’re playing with them as well.

http://primetime.smugmug.com/
http://primetime.smugmug.com/

Elastic Compute Cloud (EC2)

 Like S3, only for compute.
 Scale up or down via API.
 Web servers, processing boxes, development test

beds, build servers, etc. You name it.

 Launching large EC2 implementation “soon”
 Image processing.
 500K-1M photos/day.
 10-20 Terapixels/day processed
 Peaky traffic on weekends, holidays
 Ridiculously parallel

31
I planned to have our EC2 cluster up and running in production for this presentation, but one of our hardware vendors (Sun) gave us some hardware that’s underperforming, so we’re in a
holding pattern. Ironic that physical hardware limitations are preventing me from using virtualized hardware, but that’s the case. (We need to make some DB schema changes, and Sun’s
storage arrays aren’t keeping up). When launched, though, EC2 will handle lots of our image processing needs. Great because we can turn it up during busy times (Sunday nights,
holidays) and down during low points. I will be blogging about the Sun situation at some point, once I have a solution and all the facts, so check out my blog at http://
blogs.smugmug.com/onethumb for updates.

Simple Queue Service (SQS)

 Simple, reliable queuing.
 Mates well with EC2 & S3
 Stick jobs in SQS
 Retrieve jobs with EC2 instances using S3 data
 Run jobs, report status to SQS.

 $0.10/1000 items
 Priced well for small projects.
 Gets costly for huge ones (millions+).

32
We don’t currently use SQS because we already have our own queuing system and SQS doesn’t price well for people needing hundreds of thousands or millions of items per day, like we
do. But that may change if Amazon introduces bulk pricing or a sliding scale. There are a few places (like S3’s cost per GB to serve) where a sliding scale or bulk pricing might make
things more attractive for larger companies.

Missing Pieces

 Database API or DB grade EC2 instances.
 Fast (lots of local spindles, lots of RAM)
 Persistent.

 Load balancer API.
 Single IP in front of lots of EC2 instances.
 Programmable to add/remove/change clusters.
 Can be done with software on an EC2 instance, but

painful.

 CDN

33
To truly get rid of our entire datacenter, Amazon’s still missing a few pieces. DB boxes require lots more spindles and RAM than EC2 currentlyl provides. Even cooler, and more difficult,
would be some high-performance DB API that abstracted the machines. A load balancer API to provide programmatic addition and subtraction of EC2 instances would be fantastic, too,
and easier to use than a custom load-balancer on an EC2 instance. And finally, of course, a true CDN layered on top of S3 might be interesting.

Questions?

 Blog: http://blogs.smugmug.com/onethumb

 Slides: See the blog. Posting soon.

 Email: don AT smugmug

 Twitter: http://twitter.com/DonMacAskill

 Photo sharing: http://www.smugmug.com/

 Thanks!

34

http://blogs.smugmug.com/onethumb
http://blogs.smugmug.com/onethumb
http://twitter.com/DonMacAskill
http://twitter.com/DonMacAskill
http://www.smugmug.com
http://www.smugmug.com
http://blogs.smugmug.com/onethumb
http://blogs.smugmug.com/onethumb

