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About our Sort Benchmark

• Based on the benchmark proposed in A
measure of transaction processing power
(Anonymous et al).

• Sorts 100 byte records containing 10 byte 
keys.

• Modified to run in main-memory.
• Modified to sort 250MB of records (instead 

of 100MB).



Results

• 2-way SMT can result in speedups of over 
60%.

• SMT can tolerate cache misses.

• Gains increase as the processor/memory gap 
widens.

• The order of threads’ actions significantly 
affects speed.

• Merge sort can be more efficient than
selection trees.



Test Platform

• Xeon dual 3.0GHz.
– 2-way SMT
– 512KB L2 cache
– 1MB L3 cache.
– 2GB of RAM
– 533MHz Bus

• Pentium 4 2.8GHz
– 2-way SMT
– 2GB of RAM
– 1MB L2 cache
– 800 MHz Bus

Debian GNU/Linux
Kernel 2.6.6

gcc v3.3
Optimized for test 
architecture.



Algorithm Design

Based on Alphasort (Nyberg et al.)

For Each Set

Extract (key, pointer) pairs

Quicksort on keys

Mergesort 2 sets at a time until done

Final merge materializes output.



Single Threaded Breakdown
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Mergesort vs.
Selection Tree

• Selection tree requires large memory footprint.
– Results in many cache misses per traversal.

• Mergesort has a smaller overall runtime (for larger 
sorts)

• Mergesort is limited by memory bandwidth
because hardware prefetching hides memory 
latency.



The Final Merge
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Final Merge Comparison

• Takes a significant 
portion of runtime.
– Cache thrashing

• Propose not 
dereferencing 
pointers.

• Could be useful if 
the sort was just one 
operation within a 
query pipeline.0
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Multithreading

• Partitioned data among threads based on an 
estimated median value (Lyer et al.)

• Multiple threads sort simultaneously.  

• Ran for both SMT and SMP for two threads.
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Final Merge (detailed)

• For the final 
merge itself we 
see extremely 
large speedup.

• SMT speedup 
similar to that 
achieved by 
SMP.1
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Memory/Processor Gap

• As the memory/processor gap widens so does the 
speedups obtainable through SMT.

• Ran on both Xeon and P4
– Xeon showed overall speedup of 47%

– P4 showed overall speedup of 33%

• Mostly due to Pentium 4’s faster memory and 
slower clock
– Enabled a single thread to better utilize processor 

resources.



Semaphores For Speed,
Not Correctness
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Semaphores (continued)

• Memory bandwidth does not scale with the 
number of processors using it.

• Therefore whenever possible:
– Coordinate threads to share resources.

– Simple synchronization methods (such as 
semaphores) work well.

• Large performance gains possible on 
multiprocessor.



Further Improving Sort

• Sort key-prefixes rather than the full key.

• Enable more threads to speedup the sort
– 2 processors each running 2 threads.

• Optimize memcpy.

• Using multithreaded sort within a query 
pipeline.



Future Work

• Impact of future processors:
– Chip Multiprocessors (CMP)

– Massively Parallel (Sun Niagara/Rock)

• Database pipelines:
– How best to utilize processor resources.

• Impact on vertically partitioned databases 
(Manegold, Boncz et al.)
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