
Multithreaded Architectures and
The Sort Benchmark

Phil Garcia

Hank Korth

Dept. of Computer Science and Engineering

Lehigh University

About our Sort Benchmark

• Based on the benchmark proposed in A
measure of transaction processing power
(Anonymous et al).

• Sorts 100 byte records containing 10 byte
keys.

• Modified to run in main-memory.
• Modified to sort 250MB of records (instead

of 100MB).

Results

• 2-way SMT can result in speedups of over
60%.

• SMT can tolerate cache misses.

• Gains increase as the processor/memory gap
widens.

• The order of threads’ actions significantly
affects speed.

• Merge sort can be more efficient than
selection trees.

Test Platform

• Xeon dual 3.0GHz.
– 2-way SMT
– 512KB L2 cache
– 1MB L3 cache.
– 2GB of RAM
– 533MHz Bus

• Pentium 4 2.8GHz
– 2-way SMT
– 2GB of RAM
– 1MB L2 cache
– 800 MHz Bus

Debian GNU/Linux
Kernel 2.6.6

gcc v3.3
Optimized for test
architecture.

Algorithm Design

Based on Alphasort (Nyberg et al.)

For Each Set

Extract (key, pointer) pairs

Quicksort on keys

Mergesort 2 sets at a time until done

Final merge materializes output.

Single Threaded Breakdown

0

2

4

6

8

10

12

14

9
8

1
9
6

3
9
2

7
8
4

1
,5
6
8

3
,1
6
4

6
,3
5
6

1
2
,7
8
2

2
5
,7
1
8

5
1
,7
3
0

1
0
4
,0
4
8

2
0
9
,2
8
6

B
il
li
o
n
s

Set Size (Bytes)

Total

Mergesort

Quicksort

Xeon single processor

Mergesort vs.
Selection Tree

• Selection tree requires large memory footprint.
– Results in many cache misses per traversal.

• Mergesort has a smaller overall runtime (for larger
sorts)

• Mergesort is limited by memory bandwidth
because hardware prefetching hides memory
latency.

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

aaa data6

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

aaa data6

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

aaa data6
bat data3

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

aaa data6
bat data3

Set 1 Set 2 Unsorted Input

The Final Merge

aaa
cat
dog
egg

6
2
5
7

bat
car
dim
fog

3
1
0
8

dim data0
car data1
cat data2
bat data3
for data4
dog data5
aaa data6
egg data7
fog data8
hog data9

key data
0
1
2
3
4
5
6
7
8
9

aaa data6
bat data3
car data1

Set 1 Set 2 Unsorted Input

Final Merge Comparison

• Takes a significant
portion of runtime.
– Cache thrashing

• Propose not
dereferencing
pointers.

• Could be useful if
the sort was just one
operation within a
query pipeline.0

2

4

6

8

10

12

14

9
8

1
6
8

2
9
4

5
0
4

8
9
6

1
,5
6
8

2
,7
4
4

4
,8
0
2

8
,4
0
0

1
4
,7
0
0

2
5
,7
1
8

4
4
,9
8
2

7
8
,6
8
0

1
3
7
,6
0
6

2
4
0
,6
8
8

B
il
li
o
n
s

Set Size

With final mergeWith final merge

Without final mergeWithout final merge

Multithreading

• Partitioned data among threads based on an
estimated median value (Lyer et al.)

• Multiple threads sort simultaneously.

• Ran for both SMT and SMP for two threads.

0

2

4

6

8

10

12

14

98 25
2

67
2

1,
80

6
4,

80
2

12
,7

82
34

,0
06

90
,4

82
24

0,
68

8

B
ill

io
n

s

Set Size (Bytes)

Multithreading (continued)

With final merge Without final merge

SingleSingle

SMTSMT
SingleSingle

SMTSMT
SMPSMP

SMPSMP

Total runtimes on Xeon Processor

0

2

4

6

8

10

12

14

98 25
2

67
2

1,
80

6
4,

80
2

12
,7

82
34

,0
06

90
,4

82
24

0,
68

8

B
ill

io
n

s

Set Size (Bytes)

Final Merge (detailed)

• For the final
merge itself we
see extremely
large speedup.

• SMT speedup
similar to that
achieved by
SMP.1

1.2

1.4

1.6

1.8

2

2.2

24
9,

99
8

48
8,

27
8

95
3,

66
6

1,
86

2,
63

0

Set Size (Bytes)

SMP speedupSMP speedup

SMT speedupSMT speedup

Memory/Processor Gap

• As the memory/processor gap widens so does the
speedups obtainable through SMT.

• Ran on both Xeon and P4
– Xeon showed overall speedup of 47%

– P4 showed overall speedup of 33%

• Mostly due to Pentium 4’s faster memory and
slower clock
– Enabled a single thread to better utilize processor

resources.

Semaphores For Speed,
Not Correctness

Without
Semaphores

With
Semaphores

P1 P2 P1 P2

Memory
access

Quicksorting

Semaphores (continued)

• Memory bandwidth does not scale with the
number of processors using it.

• Therefore whenever possible:
– Coordinate threads to share resources.

– Simple synchronization methods (such as
semaphores) work well.

• Large performance gains possible on
multiprocessor.

Further Improving Sort

• Sort key-prefixes rather than the full key.

• Enable more threads to speedup the sort
– 2 processors each running 2 threads.

• Optimize memcpy.

• Using multithreaded sort within a query
pipeline.

Future Work

• Impact of future processors:
– Chip Multiprocessors (CMP)

– Massively Parallel (Sun Niagara/Rock)

• Database pipelines:
– How best to utilize processor resources.

• Impact on vertically partitioned databases
(Manegold, Boncz et al.)

Contact Information

Philip Garcia
philipgar@lehigh.edu

Henry F. Korth
hfk@lehigh.edu

Dept. of Computer Science and Engineering
Packard Lab

19 Memorial Dr. West
Bethlehem, PA 18015

